
GEOMETRY
for the

OLYMPIAD ENTHUSIAST

Bruce Merry



Introduction
The South African Mathematical Society (SAMS) has the responsibility for selecting teams to rep-
resent South Africa at the Pan African Mathematics Olympiad (PAMO) and the International Mathe-
matical Olympiad (IMO).

Team selection begins with the Old Mutual Mathematical Talent Search, a self-paced correspon-
dence course in problem-solving that starts afresh in January each year. The best performers in the Tal-
ent Search are invited to attend mathematical camps in which they learn specialised problem-solving
skills and write challenging Olympiad-level papers. Since the Pan African Maths Olympiad is not quite
as daunting as the International version, the tradition has evolved that South African PAMO teams
consist of students who have not previously been selected for an IMO team. The Inter-Provincial
Mathematical Olympiad and the South African Mathematics Olympiad are closely linked with the
PAMO and IMO selection programme.

To provide background reading for the Talent Search, the South African Mathematical Society
has published a series of Mathematical Olympiad Training Notes that focus on mathematical topics
and problem-solving skills needed in mathematical competitions and Olympiads. Six booklets have
appeared to date:

• The Pigeon-hole Principle, by Valentine Goranko

• Topics in Number Theory, by Valentin Goranko

• Inequalities for the Olympiad Enthusiast, by Graeme West

• Graph Theory for the Olympiad Enthusiast, by Graeme West

• Functional Equations for the Olympiad Enthusiast, by Graeme West

• Mathematical Induction for the Olympiad Enthusiast, by David Jacobs

Bruce Merry’s Geometry for the Olympiad Enthusiast is an important and welcome addition to this
series.

Though their primary target is the development of high-level problem-solving skills, these book-
lets can be read by anybody interested in the mathematics just beyond the high school curriculum.
They are therefore particularly useful to teachers looking for enrichment material, and students who
plan to study mathematics at university level and would like more of a challenge than the school
curriculum provides.

For more information, write to

Old Mutual Mathematical Talent Search
Department of Mathematics and Applied Mathematics
University of Cape Town
7701 RONDEBOSCH

South Africa’s participation in the Pan African and International Mathematical Olympiads is sup-
ported by Old Mutual and the Department of Science and Technology.

John Webb
April 2004



Geometry for the Olympiad Enthusiast

Bruce Merry

A booklet in this series was last published in 1996, and the series has been some-
what dormant since. Geometry has long been a gap in this series, and eventually I
decided to address this gap. I started writing this booklet in December 2000. It was
then put aside for three years, while I focused on my studies. In December 2003 I
finally returned to finish the rather delayed project.

This booklet is primarily about classical, or Euclidean, geometry. Trigonometry is
used as a tool, but is not explored in great depth, and coordinate geometry barely puts
in an appearance. While tackling the exercises and geometry problems in general,
one should remember that trigonometry and coordinate geometry are powerful tools.
I simply did not have much to say about them.

The booklet assumes a knowledge of high-school geometry. If you have not com-
pleted the high-school syllabus, it would be a good idea to first find a textbook and
work through both the theory and the exercises. The proofs included here are some-
what terse and you may need to fill in a few details yourself.

Some important results are left as problems, so you should at the very least read
the problems (although you really should attempt to solve them, as well). The po-
sitioning of problems in the book is a good indicator of how you are expected to
tackle them, although of course there are usually other solutions. There are two types
of problems: exercises that deal very specifically with the topic in hand, and real
olympiad problems. The olympiad problems are labelled with a star (?). The exer-
cises are generally easier than the olympiad problems, but some of them are quite
challenging.

I would like to thank Dirk Laurie for writing his Geomplex diagram drawing
package. This book would not have been possible without it. I would also like to
thank Mark Berman, whose flair for geometry has always inspired me to find elegant
solutions.
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1 Techniques

Geometry is unlike many of the other areas of olympiad mathematics, requiring more
intuition and less algebra. Nevertheless, it is important to do the basic groundwork as
otherwise your intuition has nothing with which to work.

Here are some suggestions on ways to approach a geometry problem.

• Draw a quick diagram so that you can visualise the problem.

• Draw a neat and accurate diagram — this will often reveal additional facts
which you could then try to prove.

• Draw a deliberately incorrect diagram (this could be your initial diagram), so
that you don’t accidentally assume the result because you referred to your ac-
curate diagram (this is particularly important if you are proving concurrency or
collinearity).

• It is very important to do as much investigation as you can. Try to relate as
many angles and line segments as you can, even if you have several variables.
Then look for similar or congruent triangles, parallel lines and so on. This on
its own can be enough to solve some easier problems without even having to
think.

• There are many approaches to attack geometry problems e.g. Euclidean geom-
etry, coordinate geometry, complex numbers, vectors and trigonometry. Think
about applying all the ones that you know to the problem and deciding which
ones are most likely to work. Be guided by what you are asked to prove: for
example, if you are asked to prove that two lines are parallel then coordinate
geometry might work well, but if the problem involves lots of related angles
then trigonometry may be a better approach.

• Don’t be afraid to get your hands dirty with trigonometry, coordinate geometry
or algebra. While such solutions might not be as “cool” as solutions that require
an inspired construction, they are often easier to find and score the same num-
ber of points. However, doing as much as possible with Euclidean geometry
first can make the equations simpler.

• Look for constructions that will give you similar triangles, special angles or
allow you to restate the problem in a simpler way. For example, if you are asked
to prove something about the sum of two lengths, try making a construction
that places the two lengths end to end so that you only have to prove something
about the length of a single line.
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• Assume that the result is true, and see what follows from this. This may lead
you to intermediate results which you can then try to prove.

• Always check that you haven’t omitted any cases such as obtuse angles or
constructions that are impossible in certain cases (for example, you can’t take
the intersection point of two lines if they are parallel). This booklet does a
terrible job of this, because the special cases are almost always trivial. I’m
lazy, the duplication costs of this booklet are high, the rainforests are dying,
and this is not a competition. In a competition, you can expect to lose marks if
your proof does not work in all cases.

2 Terminology and notation

There is some basic terminology for things that share some property. Concurrent lines
pass through a common point, and collinear points lie on a common line. Concyclic
points lie on a common circle; note that “A, B, C and D are concyclic” does not have
the same meaning as “ABCD is a cyclic quadrilateral”, since the latter implies that the
points lie in a particular order around the circle. Concentric circles have a common
centre.

The humble triangle has possibly the richest terminology and notation. There are
numerous “centres”, generally the point of concurrency of certain lines, and a few
have corresponding circles.

incentre The centre of the incircle (inscribed circle); the point of concurrency of the
internal angle bisectors

circumcentre The centre of the circumcircle (circumscribed circle); the point of con-
currency of the perpendicular bisectors

excircle The centre of an excircle (escribed circle); the point of concurrency of two
external and one internal angle bisector

orthocentre The point of concurrency of the altitudes

centroid The point of concurrency of the medians (lines from a vertex to the mid-
point of the opposite side)

Most of these terms should be familiar from high-school geometry. An unfamiliar
term is a cevian: this is any line joining a vertex to the opposite side.
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For this booklet (particularly section 6), we also introduce a lot of notation for
triangles. Some of this is standard or mostly standard while some is not; you are
advised to define any of these quantities in proofs, particularly K, x, y and z.

R

r

x

y

ha
b

γ

r

H

r
A

r

B
r

C

r

I
rO

rG

I the incentre

IA the excentre opposite A

O the circumcentre

G the centroid

H the orthocentre

a the side opposite vertex A (similarly for B and C)

s the semiperimeter, a+b+c
2

x the tangent from A to the incircle, −a+b+c
2 = s−a (similarly for y and z)

R the radius of the circumcircle (circumradius)

r the radius of the incircle (inradius)
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ra the radius of the excircle opposite A

ha the height of the altitude from A to BC

α the angle at A (similarly for β and γ)

K the area of the triangle

We also use the notation |4ABC| (or just |ABC|) to indicate the area of 4ABC.

3 Directed angles, line segments and area

In classical geometry, most quantities are undirected. That means that if you measure
them in the opposite direction, they have the same value (AB = BA, ∠ABC = ∠CBA,
and |4ABC| = |4CBA|). Most of the time this is a reasonable way of doing things.
However, it occasionally has disadvantages. For example, if you know that A, B and
C are collinear, and AB = 5, BC = 3, then what is AC? It could be either 2 or 8,
depending on which way round they are on the line. The same problem arises when
adding angles or areas.

r

A
r

B
r

C

r

A
r

B
r

C

Normally these situations are not important, because it is clear from a diagram
which is correct. However, sometimes there are many different ways to draw the
diagram, leading to a proof with many different cases. Another way to solve the
problem is to treat the quantities as having a sign, indicating the direction. So now
if you are told that AB = 5, BC = 3 then you can be sure that AC = AB + BC = 8.
This is because both have the same sign, and hence are in the same direction. If C
lay between A and B, then AB = 5, BC = −3 and so AC = AB + BC = 2. It could
also be that AB = −5, BC = 3; the positive direction is generally arbitrary but must
be consistent. What is important is that no matter in what order A, B and C lie, the
equation AC = AB+BC holds.

Directed line segments have somewhat limited use, because it only makes sense
to compare lines that are parallel. Generally they are used when dealing with ratios
or products of collinear line segments (see Menelaus’ Theorem (6.3), for example).
Directed angles and directed area are more often used.

A directed angle ∠ABC is really a measure of the angle between the two lines AB
and BC. Conventionally, it is the amount by which AB must be rotated anti-clockwise
to line up with BC. One effect of this is that while normal angles have a range of 360◦,
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directed angles only have a range of 180◦! This is because rotating a line by 180◦

leaves it back where it started, so 180◦ is equivalent to 0◦. To indicate this, equivalent
angles are sometimes written ∠ABC ≡ ∠DEF rather than ∠ABC = ∠DEF . This
limitation occasionally has disadvantages, and in particular it is not generally possible
to combine trigonometry with directed angles (since the sin and cos functions only
repeat every 360◦). This is made up for by the special properties that directed angles
do have:

1. ∠AMC ≡ ∠AMB+∠BMC;

2. ∠AXY ≡ ∠AXZ iff X ,Y,Z are collinear

3. ∠XYZ ≡ 0◦ iff X ,Y,Z are collinear

4. ∠ABC +∠BCA+∠CAB ≡ 0;

5. ∠PQS ≡ ∠PRS iff P,Q,R and S are concyclic.

Property 1 is simply the basis of directedness: the relative positions don’t matter.
Property 2 is trivial if Y and Z lie on the same side of X , and the fact that adjacent
angles add up to 180◦ if not. Property 3 just restates the fact that rotating a line onto
itself leads to no rotation. Property 4 is the result that angles in a triangle add up to
180◦, but also brings in the fact that the three angles are either all clockwise or all
anti-clockwise. Property 5 is the really interesting one: it is simultaneously the same
segment theorem and the alternate segment theorem, depending on the ordering of
the points on the circle. The problem below illustrates why having a single theorem
can be so important.

Directed areas are used even less often than directed angles and line segments,
but are sometimes useful when adding areas to compute the area of a more complex
shape. Conventionally, a triangle ABC has positive area if A, B and C are arranged in
anti-clockwise order, and negative if they are arranged in clockwise order.

Exercise 3.1. Three circles, Γ1, Γ2 and Γ3 intersect at a common point O. Γ1 and Γ2
intersect again at X, Γ2 and Γ3 intersect again at Y , and Γ3 and Γ1 intersect against
at Z. A is a point on Γ1 which does not lie on Γ2 or Γ3. AX intersects Γ2 again at B,
and BY intersects Γ3 again at C. Prove that A, Z and C are collinear.

Exercise 3.2 (Simpson Line). Perpendiculars are dropped from a point P to the
sides of 4ABC to meet BC,CA,AB at D,E,F respectively. Show that D, E and F are
collinear if and only if P lies on the circumcircle of 4ABC.
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You will find that directed angles in particular play a large role in the theorems in
this book, and they are introduced early on for this purpose. Do not be led to believe
that directed angles are so wonderful that they should be used for all problems: theo-
rems try to make very general statements and use directed angles for generality, but
most problems are constrained so that normal angles are adequate (e.g. points inside
triangles or acute angles). Normal angles are easier to work with simply because one
does not need to think about whether to write ∠ABC or ∠CBA.

4 Trigonometry

Trigonometry is seldom required to solve a problem. After all, trigonometry is really
just a way of reasoning about similar triangles. However, it is a very powerful rea-
soning tool, and if applied correctly can replace a page full of unlikely and ungainly
constructions with a few lines of algebra. If applied incorrectly, however, it can have
the opposite effect.

The first thing to do before applying any trigonometry is to reduce the number
of variables to the minimum. Then choose the variables that you want to keep very
carefully. The compound angle formulae below make it easy to expand out many
trig expressions, but if you have chosen the wrong variables to start with the task is
almost impossible.

The following angle formulae are invaluable in manipulating trigonometric ex-
pressions. In the formulae below, a ∓ indicates a sign that is opposite to the sign
chosen in a ±.

sin(A±B) = sinAcosB± cosAsinB (4.1)
cos(A±B) = cosAcosB∓ sinAsinB (4.2)

tan(A±B) =
tanA± tanB

1∓ tanA tanB
(4.3)

cot(A±B) =
cotAcotB∓1
cotA± cotB

(4.4)

sinAsinB = [cos(A−B)− cos(A+B)]/2 (4.5)
sinAcosB = [sin(A−B)+ sin(A+B)]/2 (4.6)
cosAcosB = [cos(A−B)+ cos(A+B)]/2 (4.7)

sinA± sinB = 2sin

(

A±B
2

)

cos

(

A∓B
2

)

(4.8)

cosA+ cosB = 2cos

(

A+B
2

)

cos

(

A−B
2

)

(4.9)
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cosA− cosB = 2sin

(

B+A
2

)

sin

(

B−A
2

)

(4.10)

You don’t need to memorise any of these other than the first three, because all the
others can be obtained from these with simple substitutions. You should be aware
that these transformations exist and know how to derive them, so that you can do so
in an olympiad if necessary (see the exercises).

You can also use these to derive other formulae; for example, you can calculate
sinnθ and cosnθ in terms of sinθ and cosθ fairly easily (for small, known values of
n).

Exercise 4.1. Prove equations (4.4) to (4.10).

Exercise 4.2. In a 4ABC (which is not right-angled), prove that

tanA+ tanB+ tanC = tanA tanB tanC.

4.1 The extended sine rule

The standard Sine Rule says that

a
sinα

=
b

sinβ
=

c
sinγ

.

Theorem 4.1 (Extended Sine Rule). In a triangle ABC,

a
sinα

=
b

sinβ
=

c
sinγ

= 2R,

where R is the radius of the circumcircle.

Proof. Construct point D diametrically opposite B in the circumcircle of 4ABC.
Then α = ∠CDB or 180◦−∠CDB and ∠BCD = 90◦. It follows that a

sinα = BC
BC/BD =

2R, and similarly for b
sinβ and c

sinγ .

r

A
r

B

r
C

rD

r
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Exercise 4.3. In a circle with centre O, AB and CD are diameters. From a point
P on the circumference, perpendiculars PQ and PR are dropped onto AB and CD
respectively. Prove that the length of QR is independent of the position of P.

5 Circles

5.1 Cyclic quadrilaterals

A cyclic quadrilateral is a quadrilateral that can be inscribed in a circle. There are
several results related to the angles of a cyclic quadrilateral that are covered in high
school mathematics and which will not be repeated here. These results are still very
important, and cyclic quadrilaterals appear in many unexpected places in olympiad
problems.

Exercise 5.1 (?). Let 4ABC have orthocentre H and let P be a point on its circum-
circle. Let E be the foot of the altitude BH, let PAQB and PARC be parallelograms,
and let AQ meet HR in X.

(a) Show that H is the orthocentre of 4AQR.

(b) Hence, or otherwise, show that EX is parallel to AP.

A result that is not normally taught in school is Ptolemy’s Theorem. It is mainly
useful if you have only one or two cyclic quadrilaterals, and lengths play a major role
in the problem. It is also very useful when some more is known about the lengths.
Equal lengths are particularly helpful as they can divide out of the equation.

Theorem 5.1 (Ptolemy’s Theorem). If ABCD is a cyclic quadrilateral, then

AB ·CD+BC ·AD = AC ·BD

Proof.
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r
A

rB

r

C

rD

rB′

r

C′

r

D′

Choose an arbitrary constant K and construct B′, C′ and D′ on AB, AC and AD respec-
tively such that AB ·AB′ = AC ·AC′ = AD ·AD′ = K.

Now consider 4ABC and 4AC′B′. The angle at A is common and AB
AC′ =

K/AB′

K/AC =
AC
AB′ and therefore the triangles are similar. It follows similarly that 4ABD |||4AD′B′

and 4ACD |||4AD′C′. Hence ∠B′C′D′ = ∠ABC + ∠ADC = 180◦ i.e. B′C′D′ is a
straight line. From the similar triangles, we have BC = B′C′ · AB

AC′ = B′C′·AB·AC
K , and

similarly for CD and BD. Therefore

AC ·BD = B′D′
K (AB ·AC ·AD)

= (B′C′
K + C′D′

K )(AB ·AC ·AD)

= AB ·CD+AD ·BC

This result relies on the fact that B′C′D′ is a straight line. If we had used a non-
cyclic quadrilateral, this would not have been the case. This shows that the converse
of Ptolemy’s Theorem is also true. In fact the triangle inequality in 4B′C′D′ leads to
Ptolemy’s Inequality, which says that AC ·BD ≤ AB ·CD+AD ·BC for any quadrilat-
eral ABCD, with equality precisely for cyclic quadrilaterals.

Exercise 5.2. Triangle ABC is equilateral. For any point P, show that AP+BP ≥CP
and determine when equality occurs.

5.2 The Simpson line

The Simpson line was covered as exercise 3.2, but to emphasise its importance the
statement is repeated here. A handy corollary is that the feet of perpendiculars from
a point on the circumcircle cannot all meet the sides internally — which can limit the
number of cases you need to consider.
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Theorem 5.2 (The Simpson line). Perpendiculars are dropped from a point P to the
sides of 4ABC to meet BC,CA,AB at D,E,F respectively. Show that D, E and F are
collinear if and only if P lies on the circumcircle of 4ABC.

This was exercise 3.2, so no proof is provided here.

Exercise 5.3. From a point E on a median AD of 4ABC the perpendicular EF is
dropped to BC, and a point P is chosen on EF. Then perpendiculars PM and PN are
drawn to the sides AB and AC.

Now, it is most unlikely that M, E and N will lie in a straight line, but in the event
that they do, prove that AP bisects ∠A.

5.3 Power of a point

This section is based on the fact that if chords AB and CD of a circle intersect at a
point P, then PA ·PB = PC ·PD (even if P lies outside the circle). This is easily shown
using similar triangles.

Consider fixing a point P and circle Γ and considering all possible chords AB that
pass through P. Since PA ·PB is equal for every pair of chords AB, it is equal for
all such chords. This value is said to be the power of P with respect to Γ. The line
segments are considered to be directed (see section 3), so P is negative inside the
circle and positive outside of it. In fact by considering the chord that passes through
O, the centre of Γ, it can be seen that the power of P is d2 − r2, where d = OP and
r is the radius of Γ. If P lies outside the circle then this also equals the square of the
length of the tangent from P to Γ.

It is sometimes useful to know that the converse of the above result is true i.e. if
PA ·PB = PC ·PD, where AB and CD pass through P, then A, B, C and D are concyclic
(but only if using directed line segments).

5.3.1 The radical axis

Consider having two circles instead of one. What is the set of points which have the
same power with respect to both circles? If the circles are concentric then no point
will have the same power (since d will be the same and r different for every point),
but the situation is less clear in general.
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rO1 rO2

r
P

r

H
Γ1 Γ2

Consider two circles Γ1 and Γ2 with centres O1 and O2 with radii r1 and r2 respec-
tively. Let P be a point which has equal powers with respect to Γ1 and Γ2, and let H
be the foot of the perpendicular from P onto O1O2. Then

O1P2− r2
1 = O2P2 − r2

2 (5.1)

⇐⇒ O1H2 +HP2− r2
1 = O2H2 +HP2 − r2

2 (5.2)

⇐⇒ O1H2− r2
1 = O2H2 − r2

2 (5.3)

⇐⇒ O1H2− r2
1 = (O2O1 −HO1)

2− r2
2 (5.4)

⇐⇒ 2 ·HO1 ·O2O1 = O2O1
2 + r2

1 − r2
2 (5.5)

We have eliminated P from the equation! In fact (5.3) shows that P has equal powers
with respect to the circles iff H does. If O1O2 6= 0 then we have a linear equation
in HO1 and so there is exactly one possibility for H (we are using directed line seg-
ments, so HO1 uniquely determines H). Thus the locus of P is the line through H
perpendicular to O1O2. This line is known as the radical axis of Γ1 and Γ2.

If the two circles intersect, the radical axis is easy to construct. The points of
intersection both have zero power with respect to both circles, so both points lie on
the radical axis. So the radical axis is simply the line through them.

Exercise 5.4. Two circles are given. They do not intersect and neither lies inside the
other. Show that the midpoints of the four common tangents are collinear.

5.3.2 Radical centre

What happens when we consider three circles (say Γ1, Γ2 and Γ3) instead of two?
Firstly consider the case where the centres are not collinear. Then the radical axis of
Γ1 and Γ2 will meet the radical axis of Γ2 and Γ3 at some point, say X (they will not
be parallel because a radical axis is perpendicular to the line between the centres of
the circles). Then from the definition of a radical axis, X has the same power with
respect to all three circles and so it also lies on the radical axis of Γ1 and Γ2. The fact
that the three radical axes are concurrent at a point (known as the radical centre) can
be used to solve concurrency problems.
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If, however, the three centres are collinear, then all three radical axes are parallel.
If they all coincide then all points on the common axis have equals powers with
respect to the three circles; if not then no points do.

Exercise 5.5. Show how to construct, using ruler and compass, the radical axis of
two non-intersecting circles.

Exercise 5.6 (?). Let A, B, C and D be four distinct points on a line, in that order.
The circles with diameters AC and BD intersect at the points X and Y . The line XY
meets BC at the point Z. Let P be a point on the line XY different from Z. The line
CP intersects the circle with diameter AC at the points C and M, and the line BP
intersects the circle with diameter BD at the points B and N. Prove that the lines AM,
DN and XY are concurrent.

6 Triangles

6.1 Introduction

A triangle would seem to be almost the simplest possible object in geometry, second
only to the circle. It has only has two true degrees of freedom, since scaling a tri-
angle up or down does not affect its properties. Yet the humble triangle contains an
enormous amount of mathematics — in fact too much to fully explore here.

6.2 Tangents to the incircle

Let the lengths of the tangents to the incircle from A, B and C be x, y and z. Since
a = y+ z, b = z+ x and c = x+ y, we can solve for x, y and z and get

x =
−a+b+ c

2
, y =

a−b+ c
2

, z =
a+b− c

2
.

This is the same notation that is introducted in section 2.

Exercise 6.1. Determine the lengths of the tangents from B and C to the excircle
opposite A.

6.3 Triangles within triangles

There are specific names given to certain triangles formed from points of the original
triangle:
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• The medial triangle has the midpoints of the original sides as its vertices.

• The orthic triangle has the feet of the altitudes as its vertices.

• A pedal triangle is the triangle formed by the feet of perpendiculars dropped
from some point onto the three sides. If the point is the orthocentre, then this
is the orthic triangle (and in fact some people use the term “pedal triangle” to
refer to the orthic triangle).

6.4 Points on the circumcircle

Apart from the vertices, there are a few other points that are known to lie on the
circumcircle. The first is the intersection point of a perpendicular bisector and the
corresponding angle bisector. This is easily shown by taking the intersection of the
perpendicular bisector and the circumcircle, which divides an arc (say BC) into two
equal parts which subtend equal angles at A. This is also true (although less well
known) in the case where the external angle bisector is used.

xx

xx

rA

r

B
r

C
r

D

rA

r

B
r

C

r
Dx

x

xx

The second group of points that are known to lie on the circumcircle are the
reflections of H (the orthocentre) in each of the three sides. This is an exercise in
angle chasing, using the known results about the angles in cyclic quadrilaterals.

x
x

x

r

A
r

B

rC

r

r

r

r

H ′

rH
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Exercise 6.2. A rectangle HOMF has HO = 23 and OM = 7. Triangle ABC has
orthocentre H and circumcentre O. The midpoint of BC is M and F is the foot of the
altitude from A. Determine the length of side BC.

6.5 The nine-point circle

A rather interesting circle that arises in a triangle is the so-called nine-point circle.
Let us examine the circumcircle of the triangle whose vertices are the midpoints of
4ABC (the medial triangle). Firstly, what is its radius? The medial triangle is a
half sized version of the original triangle (because of the midpoint theorem), so its
circumradius will also be half that of the large triangle, i.e. it will be R

2 .

r
A

r

B
r

C
r

D

rErF

r

P

r
Q

rR

rH

rX

Now let us see what other points this circle passes through. From the diagram it
appears that it passes through the feet of the altitudes, so let us prove this. Since
F is the midpoint of the hypotenuse of 4APB, we have ∠FPA = ∠FAP = 90◦−β.
Similarly ∠EPA = 90◦− γ and so ∠FPE = α = ∠FDE (since 4ABC |||4DEF). It
follows that P lies on the circle. Similarly Q and R also lie on the circle.

Point X is the midpoint of HC, and it also appears to lie on the circle. HC is
the diameter of the circle passing through H, Q, C and P, so X is the centre of this
circle. It follows that ∠PXQ = 2∠PCQ = 2γ. But ∠PEQ = ∠PEF + ∠FEQ =
∠PDF +∠FEQ = γ + γ, so ∠PEQ = ∠PXQ and so X lies on the circle. Similarly
the midpoints of HA and HC lie on the circle.

Because there are nine well-defined points which lie on this circle, it is known as
the nine-point circle.
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6.6 Another circle

Consider that ∠IABI = ∠IACI = 90◦; this shows that IIA is the diameter of a circle
passing through I, IA, B and C. Where is the centre of this circle? Well, any circle
passing through B and C must have its centre on the perpendicular bisector of BC,
and for IIA to be the diameter, the centre must also lie on the internal bisector of
∠A. Hence the centre is the intersection of these two lines. As shown above, the
intersection also lies on the circumcircle of 4ABC.

rA

r

B
r

C
r

D

rI

r

IA

r

Exercise 6.3 (?). In acute-angled triangle ABC the internal bisector of angle A meets
the circumcircle of the triangle again at A1. Points B1 and C1 are defined similarly.
Let A0 be the point of intersection of the line AA1 with the external bisectors of angles
B and C. Points B0 and C0 are defined similarly. Prove that

(i) the area of the triangle A0B0C0 is twice the area of the hexagon AC1BA1CB1;

(ii) the area of the triangle A0B0C0 is at least four times the area of the triangle
ABC.

6.7 Theorems

Angle bisectors can be fairly tricky to deal with. The angle bisector theorem provides
a way to compute the segments which the base is divided into.

Theorem 6.1 (Angle bisector theorem). If D is the point of intersection of BC with
an angle bisector of ∠A, then DB

DC = AB
AC .

Proof. Construct E on AD such that ∠AEC = ∠BDA. Then 4ABD |||4ACE (two
angles) and so DB

EC = AB
AC . But 4ECD is isosceles, so CE =CD and therefore DB

DC = AB
AC

as required.

15



r
A

r

B
r

C
r

D

rE

r
A

r

B
r

C
r

D

rE

Exercise 6.4. In the right-hand diagram for the angle-bisector theorem, find a for-
mula for the length BD in terms of the side lengths a, b and c.

Exercise 6.5. Given a line segment AB and a real number r > 0, find the locus of
points P such that AP

BP = r.

The theorems of Ceva and Menelaus are handy results when proving concurrency
and collinearity respectively. They are particularly powerful because their converses
are true, provided that the directions are taken into account. The converses are quite
easy to prove by assuming them to be false, and then constructing two different points
with the same uniquely defining properties.

Theorem 6.2 (Ceva’s Theorem). If AD, BE and CF are concurrent cevians of4ABC
then

BD
DC

·CE
EA

· AF
FB

= 1

Proof.

r
A

r

B
r

C
r

D

rE

rF

r
G
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Let G be the point of concurrency.

|4ABD|
|4ACD| =

BD
DC

(common height)

|4GBD|
|4GCD| =

BD
DC

(common height)

∴
|4AGB|
|4CGA| =

BD
DC

We can show similar things for CE
EA and AF

FC . Therefore

BD
DC

·CE
EA

· AF
FB

=
|4AGB|
|4CGA| ·

|4BGC|
|4AGB| ·

|4CGA|
|4BGC| = 1

This proof has not explicitly invoked directed areas or line-segments, but if they
are used it can be seen that the result will hold even if G lies outside of the triangle.

Theorem 6.3 (Menelaus’ Theorem). If X, Y and Z and collinear and lie on sides
BC, CA and AB (or their extensions) of 4ABC respectively, then

AZ
ZB

· BX
XC

·CY
YA

= −1

(Note that the sign on the result is due to directed line segments, and indicates that
the line cuts the sides themselves either twice or not at all.

Proof.

r
A

r

B
r

C
r

X

r
Y

rZ

r

A′

rB′

r
C′

Drop perpendiculars from A, B and C to meet XY Z at A′, B′ and C′. From alternate
angles, we have 4AA′Z |||4BB′Z and thus AZ

ZB = AA′
B′B . Similarly BX

XC = BB′
C′C and CY

YA =
CC′
A′A . Therefore

AZ
ZB

· BX
XC

·CY
YA

=
AA′

B′B
· BB′

C′C
·CC′

A′A
= −1
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Exercise 6.6. Use Menelaus’ Theorem to prove Ceva’s Theorem.

Exercise 6.7 (?). ABC is an isosceles triangle with AB = AC. Suppose that

(i) M is the midpoint of BC and O is the point on the line AM such that OB ⊥ AB;

(ii) Q is an arbitrary point on the segment BC different from B and C;

(iii) E lies on the line AB and F lies on the line AC such that E, Q and F are distinct
and collinear.

Prove that OQ is perpendicular to EF if and only if QE = QF.

Stewart’s Theorem is a handy tool for dealing with the length of a cevian, which
is otherwise difficult to work with.

Theorem 6.4 (Stewart’s Theorem). Suppose AD is a cevian in 4ABC. Let p = AD,
m = BD and n = CD. Then

a(p2 +mn) = b2m+ c2n.

Proof.

m n

pc

a

b

θ

r
A

r

B
r

C
r

D

Use the cosine rule in 4ABD:

c2 = m2 + p2 −2mpcosθ
∴ c2n = m2n+ p2n−2mnpcosθ (6.1)

Do the same in 4ACD, noting that cos(180◦−θ) = −cosθ:

b2 = n2 + p2 +2npcosθ
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∴ b2m = n2m+ p2m+2mnpcosθ (6.2)

Now add (6.1) and (6.2):

b2m+ c2n = m2n+n2m+ p2n+ p2m (6.3)

= (m+n)(p2 +mn) (6.4)

= a(p2 +mn) (6.5)

In the special case that AD is a median, Stewart’s Theorem reduces to 4p2 +a2 =
2(b2 + c2), which is known as Apollonius’ Theorem.

Exercise 6.8. In 4ABC, angle A is twice angle B. Prove that a2 = b(b+ c).

Theorem 6.5 (Euler’s Formula).

OI2 = R(R−2r)

As a corollary, we have Euler’s Inequality:

R ≥ 2r.

Proof. Extend the angle bisector from A to meet the circumcircle again at D. Also
construct X diametrically opposite D on the circumcircle and construct Y as the foot
of the perpendicular from I onto AC. We calculate the power of I with respect to the
circumcircle (see section 5.3), which is equal to OI2−R2 and also to −AI · ID. From
section 6.6, we have ID = CD.

rA

rB rC

r

D

rI rO

r
X

rY

α
2

α
2
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Now we note that 4DXC |||4IAY , and so AI
IY = XD

DC ⇐⇒ AI · ID = 2rR. Since OI2−
R2 = −AI · ID, it follows that OI2 = R(R−2r) as required.

Euler’s Theorem provides a measure of the distance between the incentre and
circumcentre. However it is most often invoked as Euler’s Inequality.

Exercise 6.9 (?). Let r be the inradius and R the circumradius of ABC and let p be
the inradius of the orthic triangle of triangle ABC. Prove that

p
R
≤ 1− 1

3

(

1+
r
R

)2
.

6.8 Area

There are numerous formulae for the area of a triangle, and in many cases things can
be discovered by equating them.

Theorem 6.6 (Heron’s Formula).

K =
√

sxyz

Proof. This is probably the ugliest proof in this booklet. Here goes:

16K2 = 4(absinγ)2

= 4a2b2(1− cos2 γ)

= 4a2b2

[

1−
(

a2 +b2− c2

2ab

)2
]

= 4a2b2− (a2 +b2 − c2)2

= (2ab−a2−b2 + c2)(2ab+a2 +b2− c2)

=
[

c2− (a−b)2][(a+b)2− c2]

= (c−a+b)(c+a−b)(a+b+ c)(a+b− c)

= 16sxyz.

Theorem 6.7 (Triangle area formulae).

K = 1
2aha = 1

2bhb = 1
2chc (6.6)

= 1
2absinγ = 1

2bcsinα = 1
2casinβ (6.7)
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=
abc
4R

(6.8)

= 2R2 sinαsinβsinγ (6.9)

= 1
2R(acosα+bcosβ+ ccosγ) (6.10)

= R(acosβcosγ+bcosγcosα+ ccosαcosβ) (6.11)
= rs (6.12)
= rax = rby = rcz (6.13)
=

√
sxyz (Heron’s Formula) (6.14)

Proof. The first is the standard formula for the area of a triangle. The second is really
the same formula, since sinγ = ha

b . The third is obtained using the extended sine
rule (sinγ = c

2R). The fourth is similarly obtained using the extended sine rule by
converting all side lengths to sines.

Equation 6.9 is obtained by adding the areas of the isosceles triangles 4BOC,
4COA and 4AOB. The base of 4BOC is a and ∠BOC = 2∠BAC = 2α, so the
height is OC cosα = Rcosα. Adding up the areas gives the result.

a/2
Rcosα

r
A

r

B
r

C
r

rO

The following equation is obtained from 6.9 by replacing a by bcosγ + ccosβ
and similarly for b and c.

Equation 6.12 is obtained similarly to 6.9, but using I instead of O. The three
triangles all have height r, so the area is 1

2(ra + rb + rc) = rs. Equation 6.13 uses
the excentre Ia instead; in this case one adds triangles ABIa and ACIa and subtracts
triangle BCIa.

Heron’s Formula was covered earlier.

Exercise 6.10. An equilateral triangle has sides of length 4
√

3. A point Q is located
inside the triangle so that its perpendicular distances from two sides of the triangle
are 1 and 2. What is the perpendicular distance to the third side?

Exercise 6.11. Prove that
1
r

=
1
ra

+
1
rb

+
1
rc

.

21



There is one area more formula that is used with coordinate geometry.

Theorem 6.8. If one vertex of a triangle is at the origin and the other two are at
(x1,y1) and (x2,y2), then

K = 1
2 |x1y2− x2y1| .

If the absolute value operator is removed, one gets a formula for directed area1.

Proof. The proof below uses trigonometry. It is also possible to compute the area of
the triangle by starting with a rectangle that bounds it, and subtracting right triangles.
However, that approach requires several cases to be considered.

θφ
r

A

r
B(ccosθ,c sinθ)

r
C(bcosφ,b sinφ)

Assume without loss of generality that C makes a larger angle from the x-axis than B
(swapping B and C simply negates the term inside the absolute value). Then (x1,y1) =
(ccosθ,csinθ), (x2,y2) = (bcosφ,bsinφ) and the area is

1
2bcsinα = 1

2bcsin(φ−θ)

= 1
2bc(sinφcosθ− cosθsinφ

= 1
2(x1y2 − x2y1).

6.9 Inequalities

Inequalities in triangles are often best solved by first expressing all the quantities in
terms of as few variables as possible (ideally, only two or three) and then using in-
equality techniques discussed in Inequalities for the Olympiad Enthusiast to finish the
problem algebraically. Jensen’s Inequality is particularly powerful when combined
with trigonometric functions.

1The sign is used in computer graphics to determine whether three points are wound clockwise or anti-clockwise.

22



Theorem 6.9 (Jensen’s Inequality). A function f is said to be convex on an interval
[a,b] if f (x)+ f (y)

2 ≥ f
(x+y

2

)

for all x,y ∈ [a,b]. If f is convex2 on [a,b] then for any
x1,x2, . . . ,xn in [a,b] we have

f

(

x1 + · · ·+ xn

n

)

≤ f (x1)+ · · ·+ f (xn)

n
.

The statement also holds if all inequality signs are reversed, in which case the func-
tion is termed concave.

Proof. Refer to page 18 of Inequalities for the Olympiad Enthusiast, by Graeme
West.

Exercise 6.12. If α,β,γ are the angles of a triangle, then show that sinα + sinβ +

sinγ ≤ 3
√

3
2 .

One thing to keep in mind is the triangle inequality: if you reduce the problem
to an inequality in a, b and c then it is possible (although not necessarily the case)
that you will need to use the fact that the sum of any two is greater than the third. A
technique that sometimes simplifies this to substituting a = x+y, b = y+ z, c = z+x
in which case the triangle inequality is equivalent to x,y,z > 0. In some circles this
has become known as the Ravi Substitution, after a Canadian IMO contestant (and
later coach) Ravi Vakil. Although he did not invent the technique, he successfully
applied it to an IMO problem.

There are a few other useful inequalities that are specific to triangles. The first is
Euler’s Inequality, mentioned above. The others are listed below.

Theorem 6.10. In a triangle ABC,

3
√

3
2

R ≥ s s2 ≥ 3
√

3K K ≥ 3
√

3r2.

In each case, equality occurs iff 4ABC is equilateral.

Proof. We first prove that 3
√

3
2 R ≥ s. From the extended sine rule, a

2R = sinα and so

s
R

= sinα+ sinβ+ sinγ

≤ 3sin

(

α+β+ γ
3

)

(Jensen’s Inequality)

2If you are familiar with calculus, a convex function is one that satisfies f′′(x) ≥ 0 for all x ∈ [a,b].
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= 3sin60◦

=
3
√

3
2

.

For the remaining inequalities, we express everything in terms of x, y and z. Thus

s2 = s3/2√s

=
√

s(x+ y+ z)3

≥
√

27sxyz (AM-GM)

= 3
√

3K (Heron’s Formula).

K =
r2s2

K

≥ 3
√

3r2K
K

(from the previous step)

= 3
√

3r2.

Theorem 6.11 (Erdős-Mordell). Let P be a point inside triangle 4ABC, and let the
feet of the perpendiculars from P to BC,CA,AB be D,E,F respectively. Then

AP+BP+CP ≥ 2(DP+EP+FP).

Proof. Extend AP to meet the circumcircle of 4ABC at A′. Let ∠BAP = θ and
∠CAP = φ. Note that FP = APsinθ and EP = APsinφ, so EP

FP = sinφ
sinθ = CA′

BA′ . Also
note that a ·AA′ = b ·BA′+c ·CA′ (from Ptolemy’s Theorem in the cyclic quadrilateral
ACA′B), so AA′ = b

a ·BA′+ c
a ·CA′. Now

AP =
FP

sinθ

=
FP ·2R

BA′ (Extended Sine Rule)

≥ FP ·AA′

BA′ (AA′ is less than the diameter)

=
FP(b ·BA′+ c ·CA′)

a ·BA′

=
b
a
·FP+

c
a
·CA′

BA′ ·FP

=
b
a
·FP+

c
a
·EP.
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A′

Now we can establish similar inequalities for BP and CP, and adding these gives

PA+PB+PC ≥
(

b
c

+
c
b

)

PD+
(c

a
+

a
c

)

PE +

(

a
b

+
b
a

)

PF

≥ 2(PD+PE +PF). (AM-GM)

Exercise 6.13. Let ABC be a triangle and P be an interior point in ABC. Show that
at least one of the angles PAB, PBC, PCA is less than or equal to 30 degrees.

7 Transformations

A very powerful idea in geometry is that of a transformation. A transformation maps
every point in space to some other point in space. Structures like lines or circles
are transformed by applying the transformation to every point on them. They do not
necessary maintain their shapes; in fact there is a transformation (inversion) which
generally maps lines to circles! Each transformation will preserve certain properties
of a diagram, and by translating the properties of the original into the transformed
diagram one can obtain new information. Here a diagram is really just a set of points.

7.1 Affine transformations

The transformations we discuss here are all affine. That means that straight lines
are mapped to straight lines, and lengths are scaled uniformly. The transformations
presented here all preserve angles as well. These transformations can in fact be built
up by combining reflections and scale changes, although this is not necessarily the
best way to think about them.
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7.2 Translations, rotations and reflections

The simplest transformation is a translation: every point simply moves a constant
distance in a constant direction; this is like picking up a piece of paper and moving it,
without rotating it. Rotations rotate all the points by some angle around a particular
point; this is like sticking a pin in a piece of paper and then turning it. Reflections
take all points and reflect them in a particular line; this is like picking up the piece
of paper and putting it down upside-down (the paper would of course need to be thin
enough for the diagram to be seen through the back).

While these are all quite straightforward, they can also be very powerful because
they preserve so much. They are also closely related, as shown by the next problem.

Exercise 7.1. In each of the following, show that the transformations exist using a
concrete construction.

(a) Show that any rotation or translation can be expressed as the combination of a
pair of reflections, or vice versa.

(b) Show that two rotations, two translations or a translation and rotation can always
be combined to produce a single translation or rotation.

(c) Show that any combination of translations, reflections and rotations yields either
a rotation, a translation, or a translation followed by a reflection.

Exercise 7.2. In acute-angled triangle ABC, a point P is given on side BC. Show how
to find Q on CA and R on AB such that 4PQR has the minimum perimeter.

Exercise 7.3 (?). The point O is situated inside the parallelogram ABCD so that
∠AOB+∠COD = 180◦. Prove that ∠OBC = ∠ODC.

7.3 Homothetisms

So far we have discussed only rigid transforms, namely those that can be illustrated
with a piece of paper. We now move on to scaling. Imagine drawing a diagram on a
new T-shirt, and then letting the T-shirt shrink in the wash. Assume the ink doesn’t
run and that the T-shirt doesn’t warp, you will have the same diagram, only smaller.
All the angles and so on will be the same, although lengths will not.

A homothetism is a fancy name for scaling. One chooses a centre (sometimes
called the “centre of similitude”) and a scale factor. Every point is then kept in the
same direction relative to the centre, but its distance from the centre is scaled by the
scale factor. Like translations, homothetisms preserve orientation, angles, and ratios
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of lengths. However, lengths are scaled by the scale factor. The result below allows
one to find the centre of a homothetism.

Theorem 7.1. Let S and T be two similar figures which have the same orientation,
but are not the same size. Then there is a homothetism that maps S to T .

Proof. Pick a point A in S and its corresponding point A′ in T . Now pick a second
point B in S, not on AA′, and its corresponding point in B3. Now if AA′ and BB′ are
parallel then AA′B′B would be a parallelogram, making AB = A′B′. But we assumed
that S and T are of different sizes, which would give a contradiction. Hence AA′

and BB′ meet at a point, which we will call P. Now consider the homothetism with
centre of similitude P and scale factor A′P

AP . It will clearly map A to A′; will it map
B to B′? Yes, because 4ABP |||4A′B′P by parallel lines. If we can show that this
homothetism maps the rest of S to T then we are done.

r
A

r

B

rA′

r

B′

rP

Let C be some arbitrary point in S. We aim to show that the homothetism maps
C to its corresponding point C′ in T . If C is A or B then we are done. If C lies on AB
then C is uniquely defined by AC

BC (with directed line segments). But homothetisms
preserve ratios of lengths, and A′C′

B′C′ = AC
BC so C is mapped to C′. If C does not lie on

AB then C is uniquely defined by the directed angles ∠BAC and ∠ABC, and angles
are preserved by homothetisms.

The construction also suggests how the centre of similitude can be found in prac-
tice: take two pairs of corresponding points and find the intersection of the lines
between them. For example, any two circles of different sizes satisfy the require-
ments, so a homothetism can be found between them. The points of tangency of the
common tangent are corresponding points, since they have the same orientation rel-
ative to the centre. Hence the centre of similitude is the intersection of the common
tangents.

What happens if we have non-overlapping circles, and use the other pair of com-
mon tangents? It turns out that this point is also a centre of similitude. However,
this homothetism has a negative scale factor, which means that points are “sucked”

3If no such B exists, then make some arbitrary construction in S and the corresponding construction in T to produce
such a B.
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through the centre and pushed out the other side. This also rotates the figure by 180◦,
although for a circle this isn’t visible. The theorem above in fact applies to situations
where the two figures have orientations that are out by 180◦, in which case a negative
scale factor is used. In this case the figures may even by the same size (since the scale
factor is −1, not 1).

Exercise 7.4. Let ABC be a triangle. Use a homothetism to show that

(a) the medians of 4ABC are concurrent;

(b) the point of concurrency (the centroid) divides the medians in a 2 : 1 ratio;

(c) the orthocentre H, the centroid G and the circumcentre O are collinear, with
HG : GO = 2 : 1 (this line is known as the Euler line). Assume that H and O exist
(i.e. that the defining lines are concurrent).

Exercise 7.5 (?). On a plane let C be a circle, L be a line tangent to the circle C and
M be a point on L. Find the locus of all points P with the following property: there
exist two points Q,R on L such that M is the midpoint of QR and C is the inscribed
circle of triangle PQR.

7.4 Spiral similarities

An even more general transformation than a homothetism is a spiral similarity. A
spiral similarity combines the effects of a homothetism and a rotation: the plane is
not only scaled around a centre P by some factor r, it is also rotated around P by an
angle θ. A spiral similarity preserves pretty much the same things as homothetisms
i.e. ratio of lengths and angles. However, corresponding lines are no longer parallel,
but meet each other at an angle of θ. As for homothetisms, there is a result that makes
it possible to find a spiral similarity given two similar figures.

Theorem 7.2. Let S and T be two sets of points that are similar but have either
different orientation or different size (or both). Then there is a spiral similarity that
maps S to T .

Proof. In the special case that S and T have the same orientation, there exists a ho-
mothetism, which is just a special case of a spiral similarity. So we assume that S and
T have different orientations. We also include the case where S and T are oriented
180◦ apart in the special case, as this is a homothetism with negative scale factor.

Choose two arbitrary points A and B in S, and their corresponding points A′ and
B′ in T . Let P be the intersection of AB and A′B′. Construct the circumcircles of
4AA′P and 4BB′P, and let their second point of intersection be Q (Q exists because
of the assumptions).
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r

Q

Now ∠AQA′ ≡∠APA′ ≡ BPB′ ≡ BQB′, ∠AA′Q ≡∠APQ≡∠BPQ ≡∠BB′Q and
similarly ∠A′AQ ≡ B′BQ. It follows that triangles AA′Q and BB′Q are directly sim-
ilar4. Now consider the spiral similarity with centre Q, angle AQA′ and scale factor
A′Q
AQ . It will map A to A′ by construction, and from the similar triangles it will map
B to B′. We can now proceed to show that S is mapped to T , as was done in the
corresponding theorem for homothetisms.

Exercise 7.6. Squares are constructed outwards on the sides of triangle ABC. Let P,
Q and R be the centres of the squares opposite A, B and C respectively. Prove that
AP and QR are equal and perpendicular.

8 Miscellaneous problems

These problems all draw on the techniques in this book, but do not fit well into any
particular section. They are mostly very challenging problems designed to give you
practice.

Exercise 8.1 (?). ABCD is a square. P is a point inside the square with ∠ABP =
∠BAP = 15◦. Show that 4CDP is equilateral.

Exercise 8.2 (?). A 6m tall statue stands on a pedestal, so that the foot of the statue
is 2m above your head height. Determine how far from the statue you should stand
so that it appears as large as possible in your vision.5

4Two triangles are directly similar if they are similar and have the same clockwise/anti-clockwise orientation.
5In other words, maximise the angle formed by the foot of the statue, your head and the top of the statue.
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Exercise 8.3 (?). In an acute angled triangle ABC the interior bisector of ∠A inter-
sects BC at L and the circumcircle of 4ABC again at N. From point L perpendiculars
are drawn to AB and AC, the feet of these perpendiculars being K and M respectively.
Prove that the quadrilateral AKNM and the triangle ABC have equal areas.

Exercise 8.4 (?). ABC is a triangle. The internal bisector of the angle A meets the
circumcircle again at P. Q and R are similarly defined relative to B and C. Prove that

AP+BQ+CR > AB+BC +CA.

Exercise 8.5 (?). A circle of radius r is inscribed in a triangle ABC with area K. The
points of tangency with BC, CA and AC are X, Y and Z respectively. AX intersects
the circle again in X ′. Prove that BC ·AX ·XX ′ = 4rK.

Exercise 8.6 (?). A semicircle is drawn on one side of a straight line `. C and D
are points on the semicircle. The tangents at C and D meet ` again at B and A
respectively, with the centre of the semicircle between them. Let E be the point of
intersection of AC and BD, and F the point on ` such that EF is perpendicular to `.
Prove that EF bisects ∠CFD.

Exercise 8.7 (?). In 4ABC, let D and E be points on the side BC such that ∠BAD =
∠CAE. If M and N are, respectively, the points of tangency with BC of the incircles

of 4ABD and 4ACE, show that
1

MB
+

1
MD

=
1

NC
+

1
NE

.

Exercise 8.8 (?). Let P be a point inside 4ABC such that

∠APB−∠ACB = ∠APC−∠ABC.

Let D, E be the incentres of 4APB,4APC respectively. Show that AP, BD and CE
meet at a point.

9 Solutions

3.1 Using classical geometry to solve this problem would result in an enormous
number of different cases. However, directed angles hide all of that, and the
result appears with a few lines of basic calculation:

∠AZC ≡ ∠AZO+∠OZC

≡ ∠AXO+∠OYC (concyclic points)
≡ ∠BXO+∠OYB (collinear points)
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≡ ∠BXO+∠OXB (concyclic points)
≡ ∠BXO−∠BXO (directed angles)
≡ 0◦,

and hence A, Z and C are collinear.

3.2 Note that PC subtends right angles at D and E, and hence is the diameter of a
circle passing through P, C, D and E. Similarly, P,A,F and E are concyclic.

rA

r

B
rCr

D

r

E

r
F

rP

∠DEF ≡ ∠DEP+∠PEF

≡ ∠DCP +∠PAF

≡ ∠BCP−∠BAP.

It follows that ∠DEF ≡ 0◦ ⇐⇒ ∠BCP ≡ ∠BAP. The first is a condition
for D,E,F to be collinear and the second is a condition for P to lie on the
circumcircle of 4ABC.

4.1 cot(A±B) = cot Acot B∓1
cotA±cot B can be shown by substituting tanθ = 1

cosθ into tan(A±
B) = tan A±tan B

1∓tan A tan B and simplifying. The expressions for sinAsinB and similar ex-
pressions can be proved simply by expanding the right hand side and cancelling
terms. The final three equations are derived by making suitable substitutions
into the previous three.

4.2 We first derive a general formula for tan(A+B+C).

tan(A+B+C) = tan[(A+B)+C]

=
tan(A+B)+ tanC

1− tan(A+B) tanC

=
tan A+tan B

1−tan A tan B + tanC

1− tan A+tan B
1−tan A tan B · tanC
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=
tanA+ tanB+(1− tanA tanB) tanC

(1− tanA tanB)− (tanA+ tanB) tanC

=
tanA+ tanB+ tanC− tanA tanB tanC

1− tanA tanB− tanB tanC− tanC tanA
.

However, we know that tan(A+B+C) = tan180◦ = 0, so the numerator must
be 0. The result follows.

4.3 Suppose that P lies on the arc BC, as in the diagram. Then OQPR is cyclic
with diameter OP, so applying the extended sine rule in 4OQR gives QR =
OPsin∠BOC. Now ∠BOC is fixed and OP is the radius of the circle, also
fixed. So QR is fixed if P lies on the arc BC. But sin∠BOC = sin∠COA =
sin∠DOA = sin∠DOB, so QR is constant wherever on the circle P may be.

rA

r

B

rC

r

D

rO rP

rQ

rR

5.1 This problem is fairly straight-forward as it consists almost entirely of angle
chasing. The only difficulty is that P can lie anywhere on the circumcircle,
which could give rise to multiple cases. We can get around this with directed
angles. This diagram is thus only for reference. D and F are the feet of the
altitudes from A and C in 4ABC.
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r

A

r
B

rC

rD

r

E

rF
rH

r

P

r
Q

rR

rX

(a) Firstly notice that since PAQB and PARC are parallelograms, BQ and CR
are parallel and equal (and in the same direction), so BCRQ is also a par-
allelogram. It follows that RQ ‖CB and hence AH ⊥ RQ. This shows that
H lies on one altitude of 4AQR. If RX ⊥ AQ then it would lie on another
altitude we would be done.
Note that B, D, H and F are concyclic. Thus

∠AHC ≡ ∠DHF (opposite angles)
≡ ∠DBF (D, H, F , B concyclic)
≡ ∠CBA

≡ ∠CPA (A, B, C, P concyclic)
≡ ∠ARC (AP ‖ RC,AR ‖ PC)

and therefore A, H, R and C are concyclic. Thus

∠AXR ≡ ∠XAR+∠ARX

≡ ∠XAB+∠BAC+∠CAR+∠ARH

≡ ∠QAB+∠FAC+∠ACP+∠ACH

≡ ∠PBA+∠ABP+∠FAC +∠ACF
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≡ ∠AFC

≡ 90◦

and the result follows.

(b) This is just more angle chasing, using the fact that H, X , A and E are
concyclic (because of the right angles).

∠AEX ≡ ∠AHX

≡ ∠AHR

≡ ∠ACR

≡ ∠PAC

≡ ∠PAE

from which it follows that XE ‖ AP.

(Proposed for IMO 1996)

5.2 We use Ptolemy’s Inequality:

AP ·BC +BP ·CA ≥CP ·AB

⇐⇒ AP+BP ≥CP (since AP = BP = CP).

Equality occurs if and only if ABPC is a cyclic quadrilateral.

5.3 Construct KL through E parallel to BC, with K and L on AB and AC respec-
tively.

r
A

r

B
r

C
r

D

r
E

r

F

r

P

rM

rN
rK rL
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From similar triangles AKE and ABD, we have KE = BD · AE
AD . Similarly, EL =

DC · AE
AD . But BD = DC, so KE = EL and hence AE is a median of 4AKL.

Also, PE ⊥ KL (since KL ‖ BC), so M, E and N are the pedal points of P in
triangle AKL. The Simpson Line theorem states that M, E and N are collinear if
and only if P lies on the circumcircle of 4AKL. But the perpendicular bisector
of KL and the angle bisector of ∠A both meet the circumcircle at the middle of
the arc KL, so P lies on the angle bisector of ∠A.

(Crux Mathematicorum, 1990, 293)

5.4 If P is one of the midpoints, then the lengths of the tangents from P to the two
circles are equal. Since these lengths are the square roots of the power of P
with respect to these two circles, P must lie on the radical axis. Since this is
true for four midpoints, they are collinear because the radical axis is a straight
line.

5.5 Call the given circles Γ1 and Γ2, and construct a third circle Γ3 which intersects
both Γ1 and Γ2. The position of Γ3 is arbitrary, provided that the centres of the
three circles are not collinear. The radical axes of (Γ1,Γ2) and (Γ1,Γ3) can
be found by drawing lines through the intersection points. The intersection of
these two lines is the radical centre of the three circles. The desired radical axis
now passes through the radical centre and is perpendicular to the line of centres
of Γ1 and Γ2, which can easily be constructed.

5.6 We use directed angles and line segments, since P may lie either inside or
outside of the segment XY . It is also possible (but more tedious) to do the
proof with two cases. The diagram below shows the one case.

rA r

B
r

C
rD

r

X

rY

r

Z

r
M

r
N
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Label the circle with diameter AC as Γ1, and the circle with diameter BD as Γ2.
The point Z lies on the radical axis of the two circles, so it has equal power with
respect to both. In particular, ZM ·ZC = ZN ·ZB, which prove that M,N,B and
C are concyclic. Call this circle Γ3. Now

∠MND ≡ ∠MNB+∠BND

≡ ∠MCB+90◦

≡ ∠MCA+∠AMC

≡−∠CAM

≡ ∠MAD.

This proves that M,N,A and D are also concyclic; call this circle Γ4. Finally,
we note that AM,DN and XY are the three radical axes formed between the
circles Γ1,Γ2 and Γ4. These lines are not all parallel (AM ‖ XY would require
that P = Z), so they must coincide at the radical centre of the circles.

(IMO 1995, problem 1)

6.1 Let D, E and F be the points of tangency of the incircle with BC,CA,AB and
let the excircle be tangent to the same sides at P, S and T respectively. Then
from common tangents,

2ES = 2FT = ES +FT

= EC +CS +FB+BT

= DC +CP+DB+BP

= 2BC.

r
A

rB rCr
D

rE
rF

r

P

rS

rT

Hence ES = FT = BC = y + z. Now BP = BT = FT −BF = (y + z)− y = z.
Similarly, CP = y.
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6.2 Since the altitude AF passes through H and BC ⊥ AF , it follows that BC and
FM coincide. Let H ′ be the reflection of H in BC. H ′ is known to lie on the cir-
cumcircle of 4ABC, so R = H ′O =

√
232 +142. Hence BM =

√
H ′O2−72 =

26 and BC = 2BM = 52.

23
7

7
rH ′

r

A

r

B
r

C
r

F

r
H

r

M

r O

6.3 Clearly, A0, B0 and C0 are in fact IA, IB and IC, and we will refer to them as
such.

(i) We will show that |4IIAC| = 2|4IA1C| (refer to the diagram on page 15,
where D is A1). Results for five other pairs of triangles follow similarly,
and adding them all up gives the desired result. Triangles IIAC and IA1C
have a common height, and bases IIA and IA1. But these bases are the
radius and diameter of the circle with diameter IIA, so the result follows.

(ii) It suffices to show that |AC1BA1CB1| is at least twice |ABC|, which is
equivalent to showing that |4BCA1|+ |4CAB1|+ |4ABC1| ≥ |4ABC|.
Let A2, B2 and C2 be the reflections of H in BC, CA and AB. These
points are known to lie on the circumcircle. When comparing the areas
of triangles BCA1 and BCA2, we note that they share a common base but
the height of 4BCA1 is greater than or equal to that of 4BCA2. Hence

|4BCA1|+ |4CAB1|+ |4ABC1| ≥ |4BCA2|+ |4CAB2|+ |4ABC2|
= |4BCH|+ |4CAH|+ |4ABH|
= |4ABC|.

(IMO 1989 Question 2)
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6.4 Let BD = m and DC = n. Then m+n = a and n
m = a−m

m = b
c . Hence

BD = m =
a

1+ b
c

=
ac

b+ c
.

6.5 If r = 1, then AP = BP and so the locus is simply the perpendicular bisector.
Otherwise suppose r > 1 (the situation is symmetric if r < 1). Pick an arbitrary
P not on AB which satisfies the condition. Let the internal and external angle
bisectors of ∠APB meet AB at D1 and D2 respectively. Then by the angle
bisector theorem, AD1

BD1
= AD2

BD2
= r. D1 and D2 are the only two points on AB

that satisfy this, so they are fixed independent of P. Also, ∠D1PD2 = 90◦, so
P must lie on the circle with diameter D1D2.

r

A
r

B
r

D1

r

D2

r

P

Conversely, suppose P lies on this circle. If P also lies on AB then P = D1 or
P = D2, both of which satisfy the conditions. Otherwise let the internal and
external bisectors of ∠PAB meet AB at E1 and E2 respectively. If AP

BP = AE1
BE1

=
AE2
BE2

< r then E1 lies closer to A than D1 and E2 lies further from A than D2. But

this means that ∠E1PE2 > 90◦, which is a contradiction. Similarly, if AP
BP > r

then ∠E1PE2 < 90◦, again a contradiction. Thus AP
BP = r, and this circle is

precisely the locus of P.

This circle is known as an Apollonius circle.

6.6 Apply Menelaus to 4ACD cut by line BGE:

AG
GD

· DB
BC

·CE
EA

= −1. (9.1)
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r
A

r

B
r

C
r

D

rE

rF

r
G

Similarly, one can apply it to 4ABD cut by BGE:

AG
GD

· DC
CB

· BF
FA

= −1. (9.2)

Finally, dividing (9.1) by (9.2) and doing some re-arranging (while being care-
ful with the sign conventions) gives Ceva’s Theorem.

6.7 Without loss of generality, let BQ ≤CQ, giving the diagram below:

rA

r

B

r
C

r

E

r
F

r

Q

rO

Suppose OQ ⊥ EF . Then EBQO and FCOQ are cyclic quadrilaterals, so
∠BEO = 180◦ −∠BQO = ∠CQO = ∠CFO. But BO = CO, so 4BEO ≡
4CFO. This gives EO = FO, making 4EOF isosceles. But OQ ⊥ EF , so
EQ = QF .

Now suppose that QE = QF. Apply Menelaus to triangle AEF, cut by line
BQC:

1 =
EQ
QF

· FC
CA

· AB
BE

=
FC
BE

.

Hence CF = BE. Also, BO = CO, so 4BEO ≡4CFO and hence EO = FO.
Then 4EOF is isosceles with EQ = QF , so OQ ⊥ EF .

(IMO 1994 question 2)
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6.8 Construct D on the extension of AC such that ∠ABD = ∠ABC. Note that AB is
then an angle bisector of 4BDC. Also, ∠BDA = 2∠ABC−∠ABD = ∠ABD,
so triangle ABD is isosceles and AD = c. From the angle bisector theorem (or
from 4ABC |||4BDC), we find that AD = ac

b .

a

b

c

c

rA

r

B
r

C

r
D

From Stewart’s Theorem, we get

(b+ c)(c2 +bc) =
(ac

b

)2
·b+a2c

=⇒ (b+ c)2bc = a2c2 +a2bc

=⇒ b(b+ c) = a2,

as required.

6.9 Let the orthic triangle be A′B′C′. We use Euler’s Inequality twice, once on
4ABC and once on 4A′B′C′. The vertices of the orthic triangle lie on the
nine-point circle, so the circumradius of 4A′B′C′ is R/2. Thus

p
R

=
1
2
· p

R/2

≤ 1
4

= 1− 1
3
· 3
2

2

≤ 1− 1
3

(

1+
r
R

)2
.

(Proposed at IMO 1993)
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6.10 The height of the triangle is 6, so the area is 12
√

3. Let the required length be
x, and consider the area as the sum of the areas of the triangles formed by Q
and the vertices.

1
2

x

r r

r

r

r

r

rQ

The total area is thus 2
√

3(1 + 2 + x). Solving the equation 12
√

3 = 2
√

3(1 +
2+ x) gives x = 3.

6.11 We know that s = x+y+z. Divide through by K, recalling that K = rs = rax =
rby = rcz.

6.12 We first check that sin is concave on [0◦,180◦]:

sinx+ siny
2

= sin

(

x+ y
2

)

· cos

(

x− y
2

)

≤ sin

(

x+ y
2

)

.

Thus

sinα+ sinβ+ sinγ ≤ 3sin

(

α+β+ γ
3

)

= 3sin60◦ =
3
√

3
2

.

6.13 Suppose for a contradiction that these angles are all strictly greater than 30◦.
Drop perpendiculars from P onto BC,CA,AB to meet at D,E,F respectively.
Then 2PF > PA, 2PD > PB and 2PE > PC. But then PA+PB+PC < 2(PD+
PE +PF), which contradicts the Erdős-Mordell Theorem.

(IMO 1991, question 5)

7.1 (a) When combining two reflections, there are two cases.
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rA

rA′

rA′′

rA

rA′

rA′′

xx••r

P

In the diagrams above, the first reflection maps A to A′, and the second
maps A′ to A′′.

(i) The lines of reflection are parallel, separated by a distance d. As
can be seen from the diagram, the combination of the reflections is
a translation by 2d, perpendicular to the lines of reflection (the di-
rection depends on the order in which the reflections are performed.
Conversely, any translation can be expressed as the combination of
two parallel reflections, suitably oriented, and with separation equal
to half the distance of the translation.

(ii) The lines of reflection are not parallel, and intersect at some point
P with an angle of θ. From the diagram, it is now clear that any
other point is rotated by an angle of 2θ around P, with the direction
depending on the order of the rotations. Conversely, any rotation
can be expressed as the combination of two reflections which pass
through the centre of the rotation, and with an angle between them of
half the rotation angle.

(b) Two translations trivially produce another translation, whose displacement
is the vector sum of the original displacements. When one or both of the
transformations is a rotation, express the transformations as pairs of reflec-
tions. We showed in part (a) that there is some freedom in the choice of
reflections. We will have four reflections which are applied in order, say
b2b1a2a1.6 We can always choose the reflections such that a2 and b1 are
the same. Identical reflections cancel out, so we are left with a1b2 which
from (a) is equivalent to a rotation or translation.

(c) We can transform all the rotations and translations into pairs of reflections,
using part (a). We can then pair off these reflections and convert them back
into translations and rotations, possibly leaving one reflection at the end.
Now part (b) shows that we can reduce the sequence of translations and

6We write sequence of transformations from right to left. This is because they are functions, so applying ab to a point
P actually means a(b(P)), with b being applied first.

42



rotations to just one, which may be followed by a reflection. It remains to
show that a rotation followed by a reflection is equivalent to a translation
followed by a reflection. We do this by appending two identical (and hence
cancelling) reflections to the sequence, at an angle we will choose in a
moment. The sequence will now appear as ccb(r2r1) where r2r1 is the
rotation, and c is the newly added reflection. We choose c so that cb forms
a rotation with angle exactly opposite to the angle of r2r1. Now (cb)(r2r1)
is the combination of two rotations that forms some translation, say T (it is
a translation, not a rotation, because of the choice of angle). Thus the entire
sequence is equivalent to cT i.e. a translation followed by a reflection.

7.2 Reflect P in CA to obtain P1 and reflect P in AB to obtain P2. Now PQ+QR+
RP = P1Q+QR+RP2. This sum will clearly be smallest when P1, Q, R and P2
lie in a straight line. So choose Q and R to be the intersections of P1P2 with CA
and AB.

r
A

r

B
r

C
r

P

rP1

rP2

r
Q

rR

7.3 Having two supplementary angles vertically opposite each other is not very
helpful. It would be more useful if we could get the angles to be either adjacent
(to create a straight line) or opposite angles of a quadrilateral (to make it cyclic).
One way to do this is to “pick up” triangle DOC and place DC on top of AB.

rA rB

r

C
r

D

r

O

r
O′

More formally, construct O′ outside ABCD such that 4AO′B ≡4DOC. Then
∠AO′B +∠AOB = 180◦, so AO′BO is cyclic. Also, OO′BC is a parallelogram
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because O′B and OC are equal and parallel. Thus ∠OBC = ∠BOO′ = ∠BAO′ =
∠ODC.

(Canadian Mathematical Olympiad 1997)

7.4 (a) Let D,E and F be the midpoints of BC,CA and AB respectively. From the
Midpoint Theorem, 4DEF |||4ABC and is half the size. It is also oriented
180◦ relative to 4ABC. Thus there is a homothetism that maps 4ABC to
4DEF , with scale factor −1

2 . The centre of similitude must lie on AD,BE
and CF , and hence these lines are concurrent.

r

A
r

B

r
C

rDrE

r

F

rO
r

G

r

H

(b) The homothetism maps AG to DG with scale factor −1
2 , so AG : GD = 2 : 1.

The result follows similarly for the other two medians.

(c) The line DO is perpendicular to BC, and hence also to EF . Similarly
EO ⊥ FD and FO ⊥ DE, so O is the orthocentre of 4DEF . Since the
homothetism maps 4ABC to 4DEF, it will also map H to O. This proves
the collinearity, and the scale follows as in the previous section.

7.5 Start with an arbitrary pair (Q,R) for which P exists, and construct the excircle
C2 of 4PQR opposite P (see diagram).
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rQ rR

r
P

r
M

r

T

r

N
r

K

rX1

rX2

rY1

rY2

The incircle and excircle of 4PQR must be homothetic, and P is the centre
of the homothetism. Now let K be the point of tangency of C with L, and let
T be the point diametrically opposite K. The corresponding point to T on C2
must also be vertically above the centre in the diagram, i.e. it is N. But the line
through corresponding points must pass through the centre of the homothetism,
so P lies on NT .

From the solution to problem 6.1 (page 36), we have QK = RN, from which
it follows that N and K are symmetrically placed about M. But K and M are
fixed, so N must be fixed too.

We have now established that any solution P must lie on NT . It is also clear
that P must lie strictly beyond T . Conversely, suppose P′ is some point on NT
beyond T . Let L′ be a line through P′ and parallel to L, and consider moving
a point P along L′, finding Q and R on L such that C is the incircle of 4PQR.
When P moves far to the left, the midpoint of QR will be far to the right, and
vice versa. Since the midpoint shifts continuously, there is at least one point
where it is M. We have shown above that this P must be the intersection of NT
with L′, namely P′, and hence P′ satisfies the desired properties. Therefore the
locus is the portion of NT that lies strictly beyond T .

(IMO 1992, question 4)

7.6 Consider the spiral similarity with centre A, rotating clockwise (in the diagram)
by 45◦ and scaling by

√
2. It will map Q to C and R to X . Now consider the

spiral similarity with centre B that rotates anti-clockwise by 45◦ and scales by
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√
2. It will map A to X and P to C. These two similarities thus map AP and QR

to the same line. They both scale by the same amount (
√

2) and the difference
of their angles is 90◦, so AP and QR must be equal and perpendicular.

r
A

r

B
r

C

r

P

rQ
r

R

r
X

8.1 Construct Q inside the square with 4CDQ equilateral. We aim to show that
P = Q.

r

A
r

B

rCrD

rQ

Now ∠QDC = 60◦, so ∠QDA = 30◦. But QD = AD, so 4AQD is isosceles
and thus ∠DAQ = 75◦. This makes ∠BAQ = 15◦, and similarly ∠ABQ = 15◦.
But then triangles ABP and ABQ have two common angles and a common side,
so they are congruent. Both P and Q lie on the same side of AB (the inside
of the square), so P and Q must be the same. Triangle CDQ is equilateral by
construction, so 4CDP is equilateral.

8.2 Construct a circle of radius 5m, with centre 5m above your head height and 4m
from the statue. This circle will pass through the head and foot of the statue.
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r

r

r

r

If your head lies on the circle you will have some constant viewing angle θ;
with your head inside the circle the angle is larger, and with your head outside
the circle it is smaller. But the circle is tangent to the line representing head-
height, so the best angle is when your head is at this point of tangency. So you
should stand 4m from the statue.

8.3 Firstly note that 4ALK ≡ 4ALM. Hence AKLM is a kite and so KM ⊥ AL;
thus |AKNM| = 1

2KM ·AN. Since ABNC is cyclic, 4ABL |||4ANC and hence
AN ·AL = AB ·AC. Also, AL is the diameter of the circumcircle of 4AKM, so
KM
AL = sinα. Substituting these into the above gives

|AKNM| = 1
2
· KM ·AB ·AC

AL

=
1
2
·AB ·AC · sinα

= |4ABC|

xx
rA

r

B
r

C
r

L
r

N

rK

rM

(IMO 1987 Question 2)

8.4 Let D be the point where the angle bisector from A cuts BC.
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r

A

r

B
r

C
r

P

rD

Since ∠BAD = ∠PAC and ∠DBA = ∠CPA we have 4BAD |||4PAC. Thus
c

BD = AP
PC . From exercise 6.4 we have BD = ac

b+c . It follows that AP = b+c
a ·PC.

But PB = PC and so from the triangle inequality, 2PC > BC ⇐⇒ PC > a
2 .

Therefore AP > b+c
2 .

Similarly BQ > c+a
2 and CR > a+b

2 . Adding these inequalities gives the desired
result.

(Australian Mathematics Olympiad 1985)

8.5 Firstly note that AX ·AX ′ is the power of A with respect to the incircle, so it is
equal to AZ2 = x2. Thus a ·AX ·XX ′ = a ·AX2−ax2.

r
A

rB rCr

X

rY

rZ

rX ′

We can calculate a ·AX2 using Stewart’s Theorem:

BC(AX2 +BX ·XC) = AC2 ·BX +AB2 ·CX

a(AX2 + yz) = b2y+ c2z

a ·AX2 = (x+ z)2y+(x+ y)2z− (y+ z)yz

= x2y+2xyz+ z2y+ x2z+2xyz+ y2z− y2z− z2y
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= x2(y+ z)+4xyz

= ax2 +4xyz.

Now we can calculate a ·AX2−ax2

a ·AX2−ax2 = 4xyz

=
4
s
· sxyz

=
4
s
·K2

=
4
s
· rsK

= 4rK as desired.

(Arbelos May 1987)

8.6 This is a good example of a problem that becomes much easier with a good di-
agram (the diagram below is intentionally skewed). If AD and BC are extended
to meet at P, then it appears that P, E and F are collinear. This would be a
useful thing to know, so we attempt to prove it.

r

A
r

B

rC
rD

r
P

r

T
r

O

Let T be the foot of the perpendicular from P to AB and let O be the centre of
the semicircle. 4OCB |||4PT B, so CB

T B = BO
BP . Similarly DA

TA = AO
AP . We want

to prove that PT , AC and BD are concurrent, which by the converse of Ceva’s
Theorem would be true if

PC
CB

· BT
TA

· AD
DP

= 1

Firstly, PC = PD (equal tangents to the semicircle), and we can substitute the
ratios found above to change this to BP

BO · AO
AP = 1. However, this is true by the

angle bisector theorem (PD is an angle bisector because 4PCO ≡4PDO). It
follows that E lies on the altitude from A, and F = T .

49



Now notice that PO subtends right angles at C, D and F , so PCFD is a cyclic
quad. Thus ∠DFP = ∠DCP and ∠CFP = ∠CDP, and since PC = PD it fol-
lows that ∠DFP = ∠CFP. Therefore EF bisects ∠CFD.

(Proposed at IMO 1994)

8.7 The key to this problem is noticing that you can treat triangles ABD and ACE
as completely separate, and ignore 4ABC. The only things these two triangles
have in common is the angle at A and the height from A. Let these quantities
be θ and h respectively. If we can express 1

MB + 1
MD in terms of θ and h then

we are done.

Let us rename D to C so that we are working with 4ABC and can use the usual
notation.

1
MB

+
1

MC
=

1
y

+
1
z

=
y+ z

yz

=
a
yz

=
ahrsx
hrsxyz

=
ahrsx
hrK2 (Heron’s Formula)

=
2K2x
hrK2

=
x
r
· 2

h

=
2
h

cot
θ
2
.

(Proposed at IMO 1993)

8.8 Construct Q so that ∠BAQ = ∠PAC and ∠ABQ = ∠APC. Then by construction,
4ABQ |||4APC. Now in 4APB and 4ACQ:

• ∠BAP = ∠BAC−∠PAC = ∠QAC

• AC
AQ = AC

AC·AB/AP = AP
AB .

Hence 4APB |||4ACQ. Now ∠CBQ = ∠APC−∠ABC = ∠APB−∠ACB =
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∠BCQ, so 4BCQ is isosceles. It follows that

AC
PC

=
AQ
BQ

=
AQ
CQ

=
AB
BP

.

r
A

rB rC

r

P

r

Q

rD
rE

Now from the angle bisector theorem, BD will cut AP in the ratio AB : BP, and
CE will cut AP in the ratio AC : CP. Since these ratios are the same, the three
lines will be concurrent.

(IMO 1996 Question 2)
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10 Recommended further reading

Geometric inequalities often require techniques from the world of standard inequal-
ities. Inequalities for the Olympiad Enthusiast, by Graeme West (part of the same
series as this booklet) provides some good material in this field.

This booklet is well under 100 pages, and as such cannot do proper justice to the
rich field of classical geometry. A highly regarded and very readable reference is
Geometry Revisited, by Coxeter and Greitzer.

A good source of problems are the yearbooks of the South African training pro-
gram for the IMO (South Africa and the nth IMO, for n≥ 35). These contain problems
and solutions for all the problems used in the training problem, including many good
geometry problems.
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