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COMPLEX GEOMETRY FOR THE OLYMPIAD ENTHUSIAST 

DIRK LAURIE 

INTRODUCTION 

There are many ways to solve problems in geometry. Traditional syn­
thetic geometry often produces very short and elegant proofs if only one 
could find the correct construction to make, or the correct intermediate 
hypothesis to prove. 

Other methods, like trigonometry, vectors, transformation and inver­
sion, occasionally provide short neat proofs. If all inspiration fails, one 
can always resort to coordinate geometry and try to grind out a solution, 
but this seldom actually works. You just lose too much when separating 
the coordinates. 

In an actual Olympiad paper, there is not enough time to try out all 
the various approaches. But there is good news for you: there is a single 
method that combines the virtues of trigonometry; vectors and coordi­
nates. This all-in-one tool is analytical geometry using complex numbers. 
If it doesn't work out with complex numbers, it probably would not have 
worked out with any of those other alternative methods either. 

Complex geometry works because: the coordinates of a point are kept 
together, as in vector geometry; it is easy to describe translation, rotation 
and reflection, as in transformation geometry; trigonometric identities 
are in effect being applied all the time but you seldom need to be con­
scious of them; and all this is achieved by arithmetic operations on points. 
There are certain problems where it gives particularly neat and short so­
lutions; you will meet several such here. Others, where it is clumsy and 
cumbersome, also occur, but not here. 

You need to acquire virtuosity in handling the complex geometry tools 
before they will become useful to you. There is no substitute for prac­
tice, and you should rework by complex numbers problems that you en­
counter elsewhere, even those that you could solve by other methods. 

The problems in this booklet fall into three categories: exercises in 
the techniques, supplements to the theory, and actual competition level 
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problems. To get full value from studying : .; material, you need to do 
them all. If you get stuck, there are hints at the back to some of the 
problems. 

1. COMPLEX NUMBERS 

You know from Cartesian coordinate geometry that any point in the 
plane can be represented by a pair of real numbers. Identify the point 
( x, y) with the complex number z = x + yi where i is an imaginary 
quantity with the curious property that i 2 = -1 (obviously i is not a real 
number) which otherwise satisfies all the normal manipulation rules of 
algebra. Therefore addition and multiplication of complex numbers are 
defined as follows: if z1 = x, + y, i and zz = xz + yzi, then 

(1) 

(2) 

z, + zz = (x1 +Y1l + (xz +yz)i; 

z,zz = (x,xz -y,yz) + (x,yz +y,xz)i. 

Notation: in algebra, when you write two symbols together, as in ab, it 
means multiplication of a and b, and that rule is followed here too, most 
of the time. But since this booklet deals with geometry, we make one 
exception: when all the symbols involve c7ital letters that are associ­
ated with points, then it may mean some gc.:..1netric object. For instance, 
A1 A2 , ABC, PQRS etc. usually denote lines, angles, polygons, etc. It will 
always be clear from the context when this happens. 

The formula for adding complex numbers is simply standard vector 
addition of points, when each point is identified with the vector from the 
origin to that point. Geometrically, addition is translation: when a given 
point is added to each of a set of points, the set of points just gets moved 
around with no change in shape, orientation etc. 

Multiplication looks complicated, but becomes easier to understand 
when you use polar coordinates , so that x = r cos 8 and y = r sin 8, 
where 8 is taken to be the anti-clockwise angle from the positive x-axis 
to the ray from the origin through (x, y). The modulus of a complex 
number is defined as !zl = r. The polar angle when taken in the range 
-180° < 8 :::; 180° is the argument of a complex number and denoted by 
arg z. Strictly speaking 8 should be in radians, but we simply define the 
o symbol so that m 0 = mn/180 and continue talking in terms of degrees. 

The polar representation gives z = r( cos 8 + i sin 8) = re6i. Those 
who have learnt some calculus will know what e means, but that is not 
relevant here: we think of e6 i as a convenient shorthand l}Ptation for 
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FIGURE 1. Polar coordinates 

cos 8 + i.sin 8, easily remembered because the exponential law 

ee1 ie8zi = e(81 +9z Ji 

is satisfied (check it using trigonometry). Therefore 

(3) z1 zz = r1r2 (cos (81 + 82) + i.sin (81 + 82)) = r1r2e( 91 +Bz li; 

(4) zdzz =rdrz(cos(81-8z)+i.sin(81 -82)) =rdr2e(e 1- 92 li. 

In words: to multiply two complex numbers, you multiply the radii and 
add the angles. If one of the points (say z1) is on the unit circle r = 1, 
then the effect of multiplication by z1 is rotation of the other point by the 
angle 81 around the origin. If one of the points (say z2 =c) is real, then 
the effect of multiplication is scaling by a factor c. 

A word of caution about the argument: equations like 

arg(z1z2) = argz1 + argzz 

arg(zdzz) = argz1 - argzz 

are only true when the right-hand side lies in the correct range. Other­
wise all we can say is that the equation is true modulo 360°. 

When two angles differ by a multiple of 360°, they look the same when 
sketched and are represented by the same complex number, but they 
may behave differently in computation. For example, one can solve the 
equation z5 = 1 as follows: let Z = COS 8 + i. sin 8, then z5 = COS 58 + 
i. sin 58 = 1 = cos 0 + i. sin 0. Therefore 8 = 0 gives a solution z = 1. But it 
is also true that 1 = cos 360° + i. sin 360°) which leads to e = 72°) etc. 

1.1. Conjugates. The conjugate z of a complex number z is defined by 

X+ iy =X- l1J. 

Note that r2 = lzl2 = zz. The geometrical interpretation is that z is the 
reflection of z in the x-axis. 
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Nothing is lost when you work with complex numbers and their con­
jugates instead of the x and y coordinates separately. You can always if 
needed recover the real and imaginary parts of z by the formulas 

(5) 

(6) 
Rez=x= (z+z)/2, 

Im z = y = (z- z)/(2i.) = i.(z- z)/2, 

and therefore it is never necessary to use x andy explicitly. 
You should convince yourself of the identities 

z1 +zz =z1 +zz, 
Z1Z2 = Z1Z2, 

so that the conjugate of an expression involving the four basic arithmetic 
operations can be calculated by conjugating everything inside and then 
doing the arithmetic. An expression such as zz which remains unchanged 
when conjugated, must always be real. 

There are several important reasons for introducing conjugates: 

• It simplifies division so you need only divide by real numbers, 
since 

Z1 Z1Z2 Z1Z2 
zz - zzzz - --;z· 

• Take a polynomial equation with real coefficients, e.g. z4 +z+ 1 = 
0. Conjugate everything to obtain z4 +z+ 1 = 0. You get the same 
equation as before with z as the unknown. Therefore every root 
either satisfies z = z (i.e. z is real) •.r there is another root z. 

• It is inconvenient to work with equations in which some quanti­
ties are complex but others are restricted to be real, such as: 

z = z1 + t(z2 - z1) where tis real. 

You easily lose track of the extra information, and anyhow the 
variable t is an unnecessary extra symbol. Instead, write the 
statement "(z- z1 )/(z2 - z1) is real" in the form 

Z-Z1 
Zz -Z1 

z-z1 
z2 -z1 

in which all the quantities may be as complex as they please. 

Problem 1. The "n-th root of unity" is defined by 

Wn = e2ni/n. 

Show that: 

----· ~------- ---- ------ ------------ ----------- ___l ______ _ 
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(1) the numbers 1, Wn, w~, ... , w~- 1 lie at the vertices of a regular 
polygon; 

(2) 1 + Wn + w~ + .. · + w~- 1 = 0; 
(3) when n = 2m where m is an odd number, then 

1 -Wzm +w~m -w~m + ·· · +w.f,:;_- 1 = 0. 

Problem 2. For all complex numbers z = x + iy not on the negative real 
axis, we define /Z = u + vi so that u > 0; the other solution to w2 = z 
is obviously w = -/Z. Show that u = J(r + x)/2 and v = ±J(r-x)/2, 
where v has the same sign as y. 

Problem 3. If tan 48 = 1l, calculate all possible values of tan 8. 

2. TRANSFORMATIONS 

We have already seen that translation, rotation, scaling and reflection 
are readily expressible in terms of complex arithmetic, so you can do 
transformation geometry by complex numbers. This is a powerful tool in 
finding quick solutions to some problems. 

The basic principle is that the linear transformation z H az + b is a 
combination of translation, rotation and scaling, which are all operations 
that preserve lengths and angles. Many problems are much easier when 
important points lie on the origin or on the coordinate axes. If we do 
not have the freedom to choose the coordinate system, we can always 
transform to the one we like, do the problem in an easy way, and then 
transform the result back to the original system. 

Here is a simple but important example. 

Perpendicular from point to line. It is easy to find the foot D of the 
perpendicular from C to the line AB when A = 0 and B is real: the 
answer is D = Re C. The linear transformation that takes A to 0 and B to 
1 is z H (z- A)/(B- A). Therefore in the general case, 

D-A C-A 
B -A= ReB -A 

C-A 
(7) ~ D =A+ (B -A)Re B -A 

Some complex expressions are invariant under certain transforma­
tions. For example, A - B is invariant under translation, because the 
transformation z H z+w changes it to (A+w)- (B +w) =A- B; AB is 
invariant under rotation, since the transformation z H wz with lwl = 1 
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Translation 0' 0 Reflection ~<\ 

~ w~e'' ~ 
ZHz+O'-~ ~ zHQ+w2(z-Q)~ 

Rotation A<\ Scaling w = 1.2 

v~~ ~0 
zHO+w(z-0) ~ 

w = eie 

FIGURE 2. Transformations and complex arithmetic. Ro­
tation and scaling have the same formula, but rotation 
requires lwl = 1 where scaling requires w to be real. 

changes it to wAwB = AWwB = AB because Ww = lwl2 = 1; and A/B 
is invariant under rotation and scaling, since the transformation z H cz, 
where c is any complex number, takes it to itself. 

Invariant expressions are important in deriving formulas. For exam­
ple, the area of a rectangle with vertices at D(O, 0), A( a, 0), B(O, b) and 
C( a, b) is a b. There are several complex expressions that all give this 
result, among them -iAB and iBA. But -iAB is not invariant under ro­
tation, whereas iBA is. Therefore iBA gives the area of any rectangle 
DACB when D = 0. Another possible expression is i(B- D)(A- D), 
which is invariant under translation and rotation, and therefore gives the 
area of any rectangle DACB. Note that the area of DBCA comes out 
negative: in the next section we discuss wh<J.r that means. 

Problem 4. Write expressions for the following operations: 

(1) Rotate z clockwise by 20° around the point P. 
(2) Reflect the point A in the line through P and Q. 

Problem 5. Show that another formula for dropping a perpendicular to a 
line is 

C-A 
D = C- i(B -A) Im B _A. 

Problem 6. It is known from transformation geometry that 

_l __ ~ 
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(1) Reflection in the line AB followed by reflection in the line CD is 
equivalent to a rotation. 

(2) Rotation bye 1 around Z1 followed by ~fy ez around Zz is 
equivalent to a single rotation. ~c 

Prove both statements by calculating the centre and angle of rotation in 
each case. 

3. GEOMETRICAL MEASUREMENTS 

Lengths are always positive, but sides are have direction: AB stands 
for the directed line segment from A to B, which is the vector B- A. The 
length of AB is IB- AI. 

For any point P, it is a matter of simple arithmetic that 

A - P = m {::::=} p = mA + nB 
P-B n m+n 

When Plies on the line segment AB, it therefore divides AB in the ratio 
m:n. 

Angles and areas may be negative. A positive angle is measured in 
an anti-clockwise direction, a negative angle in a clockwise one. The 
directed angle ABC is the amount by which BC needs to be rotated until 
it lies on BA. It is usually convenient to think of a reflex angle e as a 
non-reflex angle e ± 360° of opposite sign. 

An angle is calculated by 

ABC= arg(A- B)/(C- B), 

not by arg(A- B)- arg(C- B), in order to make sure that we get an 
angle in the correct range. Generally 

CBA =-ABC 

except when both angles are 180° : the definition of 'argument' does not 
1il> allow - 180° . 

The sign of the area of a figure depends on how its perimeter is spec­
ified. We start with triangles. If the angle ABC is such that ABC > 0, 
then also its area [ABC] = [BCA] = [CAB] > 0; but [ACB] = [CBA] = 
[BAC] = -[ABC] < 0. (The sine area formula [ABC] = 1bcsinABC 

thus remains true even when ABC< 0. But you won't need this formula: 
there are easier ways to calculate areas.) 

There are two other ways to tell the sign of an area. The notation 
ABC indicates that the directed sides are AB, BC and CA. If you traverse 
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~o,cBA<~A 
[6ABC] > 0, [6CBA] < 0 

FIGURE 3. Positive angles and areas always work with 
points taken anti-clockwise. 

the perimeter of a triangle (i.e .. walk around it along the directed sides 
until you get back to where you started), the enclosed area is positive if 
you have gone through an angle of 360° and negative if you have gone 
through -360°. If you are too lazy to walk, just stand on the perimeter 
looking forwards: the area of the triangle is positive if its interior is to 
your left. 

These two ways of telling the sign of an area apply to any non-inter­
secting figure, even curved ones. They also apply to a figure with holes 
in, as long as the perimeter of each hole is specified so that the interior of 
the figure lies the same way (always or never to the left) on each directed 
line segment. 

The area of a triangle is calculated by the formula 

(8) [ABC]= 1 Im(AC + BA + CB). 

You will be asked to prove this formula in the exercises. Alternative forms 
that are occasionally more convenient are: 

(9) [ABC]=~ (C(B- A)+ B(A- C)+ A(C- B)) 

(10) = 1 Im ((B- A)(C- AI). 

If CAB = 90°, (B- A) ( C- A) is purely imaginary and we have 

i- -
[ABC]= --(B- A)(C- A). 

2 

The area formula generalizes to an arbitrary non-intersecting polygon 
A1A2 ... An: 

(11) 
1 n -

[A1A2 ... An]= 2 L Im(AkAk-1), 
k=1 
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where Ao = An. If the polygon is convex and the origin is inside, you 
can immediately recognize the formula as the sum of the areas of the 
triangles Ak-1 Ak 0. If not, our convention about negative areas ensures 
that the formula is still correct. 

A useful application of signed areas is area coordinates. Let P be any 
point, and define 

a= [PBC]/[ABC], (3 = [PCA]/[BCA], ;y = [PAB]/[CAB]. 

Then it can be shown that 

(12) P = aA + (3B + yC, where a, (3, y E IR and a+ (3 + y = 1. 

Problem 7. Prove the formula:for the area of a triangle. 

Problem 8. Verify (12) using reversible steps in your argument, thereby 
showing that ifP is given by (12), then a, (3 andy are uniquely determined. 

4. GEOMETRIC RELATIONS INVOLVING ANGLES 

To test in general whether two directed angles are equal, the require­
ment is that 

~ ~ A-B;D-E 
ABC= DEF <===? C _ B F _ E is real and positive. 

The 'and positive' part is annoying since it becomes difficult to manip­
ulate the relation. It may be dropped when we do not need to distinguish 
between angles e and e + 180°. 

Two lines AB and CD are parallel when arg( A - B) = arg( C - D) or 
arg(A- B) = arg(C- D)± 180°; combine the cases by observing that 
they both say (A - B) I ( C - D) is real. Therefore 

(13) AB II CD <===? (A- B)I(C- D)= (A- B)I(C- D). 

Three points A, B and Care collinear when AB II BC. 
Two lines AB and CD are perpendicular when arg(A- B) = arg( C-

D) ± 90°; combine the cases by observing that they both say (A-B) I ( C­
D) is purely imaginary. Therefore 

(14) AB _!_CD <===? (A- B)I(C- D)= -(A- B)I(C- D). 

Two geometric figures are homothetic with centre A if one can be made 
to coincide with the other by scaling with fixed point A. In other words, 
there exists a real constant c such that for any point z on the first figure, 
there is a point z' on the second figure so that 

z' -A= c(z-A). 

--~~-~- ------ -----
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In complex geometry, it is convenient to define triangles ABC and 
PQR as similar (written .6.ABC - .6.PQR) only when they can be made 
homothetic by rotating one of them. This requires that they are traversed 
in the same direction, and one can be made to coincide with the other 
by some combination of rotation, translation and scaling. There must be 
certain complex numbers w =1= 0 and z such that 

A= z+wP, B = z+wQ, C = z+wR. 

Eliminating w and z from these three equations, we find that 

A-B P-Q 
.6.ABC- .6.PQR <===? C _ B = R _ Q. 

If they are traversed in opposite ways, we need to reflect one of them 
to make them the same. So the test becomes 

A-B P-Q 
.6.ABC -rev .6.PQR <===? -C B = =--==· 

- R-Q 

In Euclidean geometry we usually define similarity of triangles by 

.6.ABC Ill .6.PQR {===} .6.ABC- .6.PQR or .6.ABC -rev .6.PQR. 

This concept is seldom required in complex geometry. 
Triangles are congruent if one can be made to coincide with the other 

by some combination of rotation, translation and reflection: like being 
similar, but with scale factor 1. This gives 

C-A B-A 
.6.ABC::::: .6.PQR <===? R _ p = Q _ p =w with lwl = 1. 

As in the case of similar triangles, for full compatibility with the tradi­
tional definition of congruence one needs to define a '=rev relation. How­
ever, congruent triangles are not important in complex geometry, since 
the things we use them for (proving equality of lengths and angles) can 
be done directly once we have the points. 

Problem 9. Three equilateral triangles ABP, CDP and EFP have a common 
vertex P such that BPC+DPE+FPA = 180°. l, M and N are the midpoints 
of B C, DE and FA respectively. Prove that lM N is an equilateral triangle. 
[POTW] 

Problem 10. Prove Napoleon's theorem, which says that if you draw equi­
lateral triangles on all three sides of an arbitrary triangle, their centroids 
form an equilateral triangle. 

__L -------
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Problem 11. Three circles, with radii p, q, r, and centres A, B, C respec­
tively, touch one another externally at points D, E, F. Prove that the ratio 
of the areas of 6DEF and 6ABC equals 

2pqr 
(p+q)(q+r)(r+p)" 

[SAMO 1995] 

5. EQUATIONS OF LINES AND CIRCLES 

In complex geometry, all equations are written in terms of z and z, 
not in terms of x and y. This may not seem to be a great advantage, 
but there is an inherent symmetry between a complex number and its 
conjugate that does not exist between the coordinates themselves. Most 
of the equations are self-conjugate: when you conjugate everything, you 
just get the original equation again. When you have two equations, you 
solve only for z. 

5.1. Lines. A general point z on the line AB is collinear with A and B, 
so from (13) we get 

(z- A)/(A- B)= (z- A)/(A- B). 

Putting s =A- B, we obtain 

(IS) 
z z A A 
s s s s 

In general, we denote a line through A parallel to s by e(A II s). 
It is sometimes more convenient to descibe a line in terms of a vector 

perpendicular to it. Put w =is in (IS) to obtain 

z z: A A 
-+-=-+-. 
w w w w 

In general, we denote a line through A perpendicular tow by e(A _1_ w). 
When f(A _1_ w) does not pass through zero, it contains a point p 

closest to zero, so that p is perpendicular to f(A j_ w). Choosing A = 
w = p, we get 

(16) 
z z -+- =2 p 'P . 

This equation fully characterizes a line in terms of only one point. 
When we arrive at an equation of the form az + bz = c by other 

means, it is useful to know whether the equation does in fact describe 

il 
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a line. Conjugate everything to obtain az + bz = c. This equation only 
describes a line if it says exactly the same as the original one. Therefore 
we need b/a = a./b, i.e. lal = lbl, and uc = be. If the first of these 
conditions is not satisfied, we can solve the two equations for z; if the 
first is satisfied but not the second, the two equations are in conflict. 

5.2. Circles. The equation of a circle with radius r and centre Q is very 
easy 

lz-QI2 =r2
. 

We will denote this circle by K(Q, r). Multiplying out, we obtain 

(17) zz- Qz- Z:Q = r 2 - QQ. 

From this you can see that an equation of the form zz + az + bz + c = 0 
describes a circle if and only if b = a, c is real, and lbl 2 - c > 0. 

To find the circumcircle of 6ABC, we substitute the three vertices into 
(17) and subtract one equation from both others to obtain 

Q(A- B)+ Q(A- B)= AA- BB; 

Q(A-C) +Q(A- C) =AA- CC. 

Eliminating Q and regroup: 

Q = A(B- C)A+ B(C -A)B + C(A- B)C. 
(B- C)A + (C- A)B +(A- B)C 

The radius is found from e.g. r2 =(A- Q)(A- Q), which simplifies to 

I 
(A-B)(B-C)(C-A) I 

r = (B- C)A+ (C -A)B+ (A- B)C 

To find the incircle, the easiest method is by area coordinates. When P 
is the incentre I, the triangles PBC, PCA and PAB have equal height and 
therefore the area is proportional to the bases. We obtain 

AlB - Cl + BIC- AI .J_ CIA- Bl 
I= .. . 

IB - Cl + IC- AI + lA- Bl 

The excircles are found similarly. E.g. for the excircle opposite to A, the 
triangle PBC is traversed in the opposite direction and therefore has neg­
ative area proportional to -IB- Cl. We obtain 

-AlB - Cl + BIC- AI +CIA- Bl 
IA = -IB- Cl + IC- AI+ lA- Bl etc. 

---- _____ ! -·-----
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Problem 12. Find the radius of the incircle by calculating II- Rl. Manipu­
late the result to obtain an expression that is symmetric in A, B and C. 

5.3. Tangents. Suppose that A is on the circle K(Q, r). If Q = 0, finding 
the tangent is trivial, since A is the least point on the tangent. This would 
give z/ A + z/A = 2. To move the origin to 0, do a translation: 

(18) 
z-Q z-Q 
A-Q +A-Q =2. 

Suppose that A is on the circle K(Q, r), and we wish to find the centre 
of the circle K(Q', r') of radius r' that touches K(Q, r) at A. The easiest 
method is by homothety: if z' is a point on K(z', r'), then there is a point 
z on K(Q, r) such that (z'- A)/r' = ±(z- A)/r (the plus sign applies 
when the circles touch internally and the minus sign when they touch 
externally). The homothety applies to the whole figure, including the 
centre. Therefore Q' =A± (r' /r)(Q- A). 

6. CONSTRUCTIONS 

Constructions involve setting up and solving equations. There is not 
much point in trying to remember formulas even in simple, common 
cases such as the intersection of two lines. You must be able to apply 
the basic principles to the case at hand. 

6.1. Intersection of diagonals of quadrilateral. The problem is of course 
the same as finding the intersection of two lines, but it is easier to think 
in terms of a quadrilateral ABCD. Let X be the intersection of AC and 
BD. In order to retain the symmetry of the four given points, set up the 
collinearity equations in the form 

and similarly 

X-A X-A 
x-c=x-c 

{==} X(A- C) -X( A- C) = AC- AC, 

X(C- D) -X(C- D)= CD- CD. 

Solving for X, we find 

X= (AB- AB)(C- D)- (CD- CD)(A- B) 
(A- B)(C- D)- (C- D)(A- B) 

~-------~ - ~ ----~ --·-----
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The answer can be simplified quite a bit by noting that there are many 
subexpressions of the form z - z = 2i Im z. We obtain 

(19) 

X= (B- D) Im(CA)- (A- C) Im(DB) 

Im ((B- D)(A- C)) 

= A Im(BD) + B Im(CA) + C Im(DB) + D Im(AC) 

Im(AD + BA + CB +DC) 

4 I 4 = t; Ak Im(Ak+ 1 Ak-1) t; Im(AkAk-1) , 

where Ao = A4 and A1 = As. The last form of the formula is almost 
simple enough to remember after all: the denominator is just the area of 
the quadrilateral. 

In an actual calculation, one would hope that the four given points are 
not totally independent, and that further simplifications occur. 

6.2. Intersection of line and circle. This one is tricky. You can elimi­
nate z from the two equations to get a quadratic in z, but this quadratic al­
ways has a solution (since we are working with complex numbers) while 
the line may be missing the circle. To be safe, first calculate the point P 
on the line that is closest to the centre of the circle K ( Q, r). If IP - Q I > r, 
there is no intersection. 

6.3. Intersection of two circles. First find the radical axis, which is the 
line through the intersection points of K(Q1, r 1) and K(Qz, rz). Subtract 
the equation for the second circle from that of the first. The quadratic 
terms cancel, and we obtain 

(20) (Qz- Q1 )z+ (Q 2 - Q1 )z = rf- r~ -IQ1I2 + 1Qzl2 

which is the equation of a line. Now find the intersection of either circle 
with the radical axis. 

The radical axis is the common tangent '"hen the circles touch. It is 
still defined by (20) even when the circles are disjunct, but its geometri­
cal meaning is then more complicated. 

7. ADVANCED GEOMETRIC RELATIONS 

7.1. Concurrent lines. To test in general whether lines are concurrent, 
you calculate the intersection of two of the lines (see Section 6) and then 
test whether that point is collinear with the two remaining points, which 

-------- ---- ---- - ---~-
I 
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can be quite tedious. There is however a neat shortcut when the lines are 
in closest-point form. 

Put a = 1 /p in (16) to obtain 

(21) az+ iii= 2. 

When we speak of "the line a," we mean the line given by equation (21). 
Equation (21) remains unchanged if we exchange a (which stands for 

a line) and z (which stands for a point). Therefore three equations saying 
that three lines a, b and c all pass through a point z look exactly like three 
equations saying that three points a, b, and c all lie on a line z. So the 
three lines a, b and c are concurrent if and only if the three points a, b 
and c are collinear. But we already have a test for collinearity by using 
equation (13). This gives 

(22) 
a-b c-b 

Lines a, b and c are concurrent {===} --- = --=. 
a:-b c-b 

When the lines AD, BE and CF join each vertex of 6ABC to a point 
on the opposite side, you can use the complex form of Ceva's theorem, 
which states: 

When D, E and Fare on BC, CA and AB respectively; then 

0-BE-CF-A 
(23) AD, BE and CF are concurrent {===} 

0 
_ C E _A F _ B = -1. 

Menelaus' theorem looks very similar: When 0, E and Fare on BC, CA 
and AB respectively; then 

0-BE-CF-A 
(24) 0, E and F are collinear {=:=} 

0 
_ C E _ A F _ B = 1 · 

Problem 13. Given {J = D-B 1l = E-C and rh = F-A such that fJT]rh = 
D-C' E-A 'I' F-B 'I' 

-1, calculate ex, j3 andy such that the intersection P of AD, BE and CF is 
given by 

P = ocA + j3 B + yC. 

7.2. Cocylic points. Four points A, B, C and 0 are cocylic if and only if 
either ABC= ADC, or ABC and CDA are supplementary. Equal angles 
arise when 

arg(A- B)/(C- B)- arg(A- D)/(C- D)= 0 

(
(A- B)(C- D)) 

{===} arg (C- B)(A- D) = O. 

~ 
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Supplementary angles arise when 

arg(A- B)/(C- B)+ arg(C- D)/(A- D)= 180° 

(
(A- B)(C- D)) o 

{===} arg (C- B)(A- D) = 180 . 

The two cases can be combined by saying that 

A-B ;c-B (25) A, B, C and 0 are cocylic {===} A_ 
0 

C _ 
0 

is real. 

The expression in (25) is called the cross-ratio of the four points and 
denoted by (A, C; B, D). 

Note that the degenerate case where four points are collinear also 
counts as cocyclic. (Think, if you will, that the circle has infinite radius.) 

Problem 14. ABC is a triangle with sides 1, 2, and J3. Determine the 
smallest possible area of an equilateral triangle with one vertex on each of 
the sides of ABC. 
[SAMO 1996] 

Problem 15. The convex quadrilateral ABCD has AC j_ BD and the 
perpendicular bisectors of AB and CD meet at a point P inside ABCD. 
Show that ABCD is cyclic if and only if [ABP] = [COP]. 
[IMO 1998] 

Problem 16. Circles k 1 and k2 are drawn so that k2 passes through the 
centre of k 1 • The circles intersect in points A and B. A third circle k3 touches 
k 1 inC and k2 in 0 so that k 1 and k2 are inside k3. AB is extended to meet 
k3 in E and F. The lines DE and OF intersect kz respectively in G and H. 
Prove that GH is tangent to k 1 . 

[IMO 1999] 

Problem 17. A, B, CD, E and F lie in that order on the circumference of 
a circle. The chords AD, BE and CF are concurrent. P, Q and R are the 
midpoints of AD, BE and CF respectively. 1Wo further chords AG II BE and 
AH II CF are drawn. Prove that 6PQR Ill 6DGH. 
[SAMO 1998] 
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HINTS 

Problem 5: Which linear transformation maps C to 0 and B- A to 
1? 

Problem 7: Show that the formula is invariant under translation 
and rotation, and that it therefore suffices to show its validity 
when A = 0 and B is real. 

Problem 9: Take the origin at P and show that MN is LN rotated 
around N through 60°. 

Problem 10: The centroid of L-ABC is !(A+ B +C). 
Problem 14: Take A = 0, B = 1 and C = 2w, where w = e60oi. 

Then D + D = 2, E/w = E/w and F =F. Find the side length 
6 D EF in terms of F. 

Problem 15: Calculate the complex number P, and alsoP', which 
satisfies [ABP'] =[COP']. Try to factorize P- P'. 

Problem 16: Choose k1 = K(1,r), k2 = K(O, 1), k3 = K(Q,s). Cal­
culate Q in terms of r and s. You need to prove that ReG 
ReH = 1 -T. 

-- ------ --------

addition, 2 
angle 

directed, 5, 7 
reflex, 7 

angles 
equal, 8 

area, 7 
polygon, 8 
rectangle, 6 
sign of, 7 
triangle, 7 

argument, 2 

calculus, 3 
capital letters, 2 
Ceva's theorem, 15 
circumcircle, 12 
cocylic, 15 
collinear, 9, 11 
concurrent, 14 
congruent, 10 
conjugate, 3 
coordinates 

area, 8, 12 
Cartesian, 2 
polar, 2 

cross-ratio, 15 

degrees, 2 
direction, 6 
division, 4 

equation 
circle, 11 
line, 11 

excircles, 12 
exponential law, 3 

homothetic, 9 

imaginary, 2, 4 
IMO 

1998, 16 
1999, 16 

incenrre, 12 
incircle, 12 

) 
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invariant, 6 

linear transformation, 5 

Menelaus' theorem, 15 
modulus, 2 
multiplication, 2 

Napoleon's theorem, 10 

parallel, 9 
perpendicular, 5, 9, 11 
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polynomial, 4 

radians, 2 
radical axis, 14 
real, 4 
reflection, 3 
root of unity, 4 
rotati<Jn, 3, 5 
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scaling, 3, 5 
self-conjugate, 10 
side 

directed, 7 
similar, 9 
square root, 5 

tangent, 12 
two circles, 12 

transformation geometry, 5 
translation, 2, 5 
traverse, 7 

unit circle, 3 

vector, 2 
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