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INTRODUCTION 

The South African Mathematical Society has the responsibility for se­
lecting and training teams to represent South Africa in the annual 
International Mathematical Olympiad (IMO). 

The process of finding a team to go to the IMO is a long one. It be­
gins with a nationwide Mathematical Talent Search, in which students 
are sent sets of problems to solve. Their submissions are marked and 
returned with comments, full solutions and a further set of problems. 
The principle behind the Talent Search is straightforward: the more 
problems you solve, the higher up the ladder you climb and the closer 
you get to selection. 

The best students in the Talent Search are invited to attend Mathe­
matical Camps in which specialised problem-solving skills are taught. 
The students also write a series of challenging Olympiad-level problem 
papers, leading to selection of a team of six to go to the IMO. 
The bookets in this series cover topics of particular relevance to Math­
ematical Olympiads. Though their primary purpose is preparing stu­
dents for the International Mathematical Olympiad, they can with 
profit be read by all interested high school students who would like to 
extend their mathematical horizons beyond the confines of the school 
syllabus. They can also be used by teachers and university mathemati~ 
cians who are interested in setting up Olympiad training programmes 
and need ideas on topics to cover and sample Olympiad problems. 
Titles in the series published to date are: 

No. 1 The Pigeon-hole Principle, by Valentin Goranko 
No. 2 Topics in Number Theory, by Valentin Goranko 
No. 3 Inequalities for the Olympiad Enthusiast, by Graeme West 
No. 4 Graph Theory for the Olympiad Enthusiast, 

by Graefi.1e West · 
No. 5 Functional Equations for the Olympiad Enthusiast, 

by Graeme West 
No. 6 Mathematical Induction for the Olympiad Enthusiast, 

by David Jacobs 

Details of the South African Mathematical Society's Mathematical Tal­
ent Search may be obtained by writing to 

Mathematical Talent Search 
Department of Mathematics and Applied Mathematics 
University of Cape Town 
7700 RONDEBOSCH 

The International Mathematical Olympiad Talent Search is sponsored 
by the Old Mutual. 
J H Webb 
March 1997 
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Functional Equations 
for the 

Olympiad Enthusiast 

Graeme West 

This particular booklet in the series of training manuals has been fer­
menting in my mind for some time, and put off a number of times 
because I felt that I didn't have very much to say about the topic. And 
in the end I didn't say very much, I merely confirmed a suspicion that I 
had been harbouring for quite some time: more than any other 'topic' 
in the IMO 'syllabus', functional equations are simply a matter of do­
ing. We are obliged to tackle often difficult problems with our bare 
hands, without the hammers we have in other topics such as number 
theory or geometry. . 

The corollary is that this is mostly a booklet of exercises. Do them. If 
you're not going to do them, don't bother with any of it. 

The order of events is quite important in places. Of course problems are 
never solved by means of one idea only. But every problem is positioned 
so that it can be solved by means of the techniques already developed 
in the booklet. It follows that you should work through things more or 
less in sequence. 

To avoid misunderstanding, let me point out that numbering within 
exercises of the form (a), (b), (c) indicates distinct problems. (For 
example, Exercise 1.) On the other hand, numbering of the form (i), 
(ii), (iii) indicates a single problem : the conditions enumerated are to 
be considered simultaneously. (For example, Exercise 7.) 

I hope you derive as much enjoyment from solving these problems as I 
did from trying to. 

Graeme West 
January 1995 
Kent Ohio USA 
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1 The vocabulary of functions 

First some notation, without which we can get nowhere. 
N is the set of natural numbers, {1, 2, 3, ... }; 
Z is the set of integers, { ... - 3, -2, -1, 0, 1, 2, 3, ... }; 
R is the set of real numbers; 
Q is the set of rational numbers; 
and C is the set of complex numbers. 

Given some set A of real numbers, A+ will denote the subset of A of 
members which are > 0. The word 'positive' means > 0; 'non-negative' 
means~ 0. 

There is a special notation for intervals ofthe real line. (An interval is a 
subset of R with 'no gaps' in it.) (a, b) denotes the set { x : a < x < b}, 
while [a, b) denotes the set {x: a~ x < b}. Similarly (a,b] = {x: a< 
x :S b} and [a, b] = { x : a :S x :S b }. All of these intervals are termed 
bounded intervals. 

Note that if we are talking about Cartesian planes and things then (a, b) 
would not denote an interval but would mean the point in the plane 
with x-coordinate a and y-coordinate b. We can never get confused 
though- the meaning is always clear from the context. 

The following are also intervals: (a,oo) = {x: a< x}, and [a,oo) = 
{x: a :S x}. Likewise (-oo,b) = {x: x < b} and (-oo,b] = {x: x :S b}. 
These are called unbounded intervals. 

R could be denoted (-oo,oo), but this would be ugly. 

The empty set is denoted 0. 

Definition 1.1 A function is an assignment of points in a given set 
(called the domain of the function) to another given set (called the 
codomain of the function) with the following property : each member of 
the domain set is assigned to exactly one member of the codomain set. 
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Thus a function is specified by three things : the domain set, the codo­
main set, and the rule of assignment. 

Typically the domain set of a function might be denoted by an X and 
the codomain set by a Y. The rule of assignment might be denoted by 
the letter f or g. This is all summarised in the mathematical sentence 
'f : X - Y'. Given x E X, the point x is assigned to by f will 
be denoted f(x). We can now write f : X - Y : x - f(x). Since 
members of the codomain set Y will typically be denoted with a y, the 
expression 'y = f(x)' is a common way of describing the function. 

Examples 1.2 (a) Let X = Y = R. The assignment f(x) = x 2 

describes a function. 

(b) Let X = Y = [-1, 1]. The rule x 2 + y2 = 1 does not describe a 
function. x = 0, for example, is assigned to to both y = 1 and 
y = -1. 

(c) Let X = Y = R. The rule y = v'f'='X2 does not describe a 

function. Why? 

It is very important to be aware of what the specified domain of the 
function is when solving functional equations. Too many times I have 
seen attempted solutions of functional equations f : N - N where 
/(0) is happily calculated. This leads to a zero of a different kind. 

Now for something harder :-

Definition 1.3 (a) The range of a function f : X - Y is all those 
points in the codomain Y which have members of the domain X 
mapped to them by the function, that is 

range(/) = {y E Y : there exists x EX with f(x) = y} (1) 

(b) a function is said to be onto (or surjective) if every point of the 
codomain is mapped to by some or other point in the domain, that 
is, the range is all of the codomain. 
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(c) In general, a point in the range could have more than one point 
in the domain which is mapped to it. A function is said to be 
one-to-one (or injective) if every point of the range has exactly 
one point in the domain mapped to it, in other words, 
f(xt) = y = J(x2) ~ Xt = x2. 

(d) A function is said to be bijective if it is both surjective and injective. 

Exercise 1 Decide which of the following are injective, surjective and 
bijective functions. 

(a)f:R-R:x-x2. 

(b) f : R - [0, oo) : x - x 2
• 

(c) f: [0, oo)- [0, oo): x- x2 • 

(d)f:R-R:x-2x+7. 

(e) f : R- R: x - vz. 

Exercise 2 In the following exercises, the domain and codomain of an 
unknown function is given, as well as a functional equation. Without 
solving the functional equation (you can if you are feeling ambitious, but 
some of them can't be solved with only the information given) determine 
if the function is injecti'l(e or surjective. 

(a) f: R- R; /(/(x)) = x. 

(b)f:N-N; /(/(n)+/(m))=m+n. 

(c) f: Z- Z; f(f(n +2) +2) = n. 

(d) I: R- R; f(x 2 + f(y)) = y + (f(x))2 • 

(e) f: (0, oo)- (0, oo); f(xf(y)) = yf(x). 

(f) f: Z- Z; /{m + /(/{n))) =-J(f(m + 1))- n. 
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Definition 1.4 A function f whose domain and codomain are subsets 
of R is said to be increasing if for all x1, x2 belonging to the domain 
of/, x1 < x2 ~ f(xl) :::; !(x2). It is strictly increasing if we have 
f(xl) < f(x2)· 
Decreasing and strictly decreasing are similarly defined. A function 
which is {strictly) increasing or decreasing is said to be {strictly) mono­
tone. 

Exercise 3 Determine which of the functions in Exercise 1 are In­

creasing, strictly increasing, decreasing, strictly decreasing. 

Exercise 4 Show that a strictly monotone function is injective. Is a 
monotone function injective? 

Exercise 5 Find all f : R ....... R that are increasing and w\ich satisfy 
f(f(x)) = x. 

Definition 1.5 Suppose A C R has the property that A = -A, that 
is, x E A {::::::::} -x E A. A function f with domain A is said to be 
even if f(x) = f(-x) for every x E A; and odd if f(x) = -f(-x) for 
every x EA. 

We'll only consider this idea for functions defined on R and Z. It is 
often useful to establish that a function is even or odd, because that 
literally cuts out half of the subsequent work. 

Exercise 6 Which functions are odd or even? 

{a) f: R ....... R: x ....... x2 • 

{b) f: R ....... R: x ....... 12x. 

(c) I : R ....... R : X ....... 7 X + 34. 

{d) I: R ....... R: X ....... 0. 
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You'll need to brush up on your trig for this one. 

Exercise 7 Find all functions f : R ....... R which satisfy 

{i) /(2x) = / (siil (":+!f))+ f (sin ("2x- !f)); 

{ii) f(x 2 - y2
) = (x + y)f(x - y) + (x- y)f(x + y). 

Definition 1.6 (Composition of functions) Suppose f : X ....... Y 
and g : Y ....... Z. Then the ·composition of g and f is the function 
go f: X ....... Z given by go f(x) = g(f(x)). 

The clumsy notation seen in the solution of Exercise 2 makes us appre­
ciate the following definitions and notations. 

Definition 1. 7 (Iterates of functions) Suppose J : X ....... X, that 
is, the codomain of f is the same as the domain. Then f composed 
with itself, f o /, is denoted P. Thus 

f o f(x) = f(f(x)) = /2 (x) 

In general, I composed with itself n times will be denoted r' that is 

r(x) = !(!( ... f(x))) -----n 

It is to be understood that Jl(x) = f(x) and f 0 (x) = x. 

Given x EX, the {ordered) set 

{x, f(x), / 2(x), / 3 (x), ... } 

is called the orbit of x under f. 

Exercise 8 Make sure you fully understand the differences and simil­
arities between P(x), f(x) 2, /(x2 ). 

There aren't two many similarities, so half of the problem is easy. 
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2 Pointers to solving functional equations 

This section serves as a brainstorm of ideas for solving functional equa­
tions. There are no exercises here : the idea is that you will refer back 
here for advice when doing the exercises in the other sections of this 
booklet. (Your inspiration will have to come from elsewhere.) 

Certain points are dealt with in great detail elsewhere, and so are only 
mentioned briefly here. 

1. Find trivial solutions to the functional equation. f = 0 is often a 
solution. (That means the function for which f(x) = 0 for every 
x.) Very often finding trivial solutions takes out insurance for 
what you do later : for exanu>le, you might later want to divide 
by some particular f(x), not very convincing if f(x) is always 0! 

Make it clear to the reader of your solution that you have found 
these trivial solutions. 

2. Try at the beginning to find at least one non-trivial solution, if 
you think this is appropriate. You may even feel that you have 
found all solutions. If so, this can help in forming your subsequent 
strategy, because you can test your ideas against the solutions 
found. 

There is always credit for correctly guessing the actual solutions, 
as long as they're not "very obvious. 

3. Make a mental note of the domain and make sure your calcula­
tions do too. 

4. Put variables (singly, and in pairs, etc) equal to 0, 1, other sug­
gested numbers, each other. This is the basic labour from which 
everything else needs to follow. 

5. Test if the function is injective. This should develop into a reflex 
action. 
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6. Check to see if the function is monotone, could be monotone, or 
if monotonicity would enable further important conclusions to be 
drawn. Remember strict monotonicity implies injectivity. 

7. Check if possible for surj~ctivity. Often this is not possible and 
often it's unimportant. But often it is useful to know that a 
certain value belongs to the range, because this allows for useful 
substitutions. 

8. If 0 belongs to the domain then 'division by x' is illegal; if 0 
belongs (or may belong) to the range then 'division by f(x)' is 
illegal. Treat division with care! 

9. Consider orbits, iterates, and fixed points. This is dealt with in 
some detail later. 

10. Think about transformations (also mentioned later). This doesn't 
come up often, but it's very powerful when it does. 

11. Try to calculate the value of the function at a point in two differ­
ent ways. (Especially common if the functional equation has two 
defining equations.) The results, even though the expressions are 
different, will be equal. 

The idea of symmetric substitutions is related to this, and is dealt 
with briefly later. 

12. Having made some discovery, start again : (a) rewrite all the 
known equations in terms of the new information; (b) check if 
possible strategies which were stumped before now have a better 
chance of bearing fruit; (c) make new guesses at solutions. 

13. At some point in your argument you might have eliminated 'para­
sitic' solutions e.g. f = 0. At the end of your solution, summarise, 
stating all the solutions, both trivial and non-trivial. 

14. Check solutions that are found. Your arguments will find all 
possible solutions. That does not mean that what you have found 
is really a solution, so finding a 'solution:, which isn't doesn't 
necessarily mean you've made an error in your calculations. 

9 



Checking the solution means verifying that the function you have 
found does indeed satisfy the conditions of the question. 

Usually boring but always important, and usually worth the last 
piece of credit in an examination. 
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Inductive arguments 

In this section we will consider functional equations on sets like N or 
Z or Q which are solved by use of inductive techniques. 

Theorem 3.1 (Principle of mathematical Induction) 
Suppose T C N, 1 E T, and nET=> n + 1 E T. Then T = N. • 
Some functional equations are solved by a no-strings-attached inductive 
argument. On other occasions, induction can be made more subtle :. 
for example, the induction might be performed in 'blocks', for example, 
assuming the statement true for {1, 2, ... , 3n, 3n + 1, 3n + 2}, we 
establish it true for {3n + 3, 3n + 4, 3n + 5}. In this case, induction is 
performed in blocks of three. By the way, in this example, it is necessary 
to start the induction by establishing 'by hand' that the statement is 
true for 1, 2, 3, 4, 5. (Why?) 

By the way, in many places in the solutions I have waved my hands 
about inductive proofs if I believe that the induction is routine. I'm 
lazy, duplication costs of this booklet are high, the rainforests are dying, 
and this is not a competition. In a competition, you need to provide 
the details. 

Exercise 9 Determine all functions f : Z --+ Z which satisfy 

(i) f(k + n) + f(k- n) = 2f(k) f(n) for all integers k and n; 

(ii) there exists an integer N such that -N < f(n) < N for all n. 
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Exercise 10 The function f(x, y) satisfies 

(i) f(O, y) = y + 1; 

(ii) f(x + 1, 0) = f(x, 1); 

(iii) f(x + 1,y+ 1) = f(x,f(x + 1,y)) 

for all non-negative integers x andy. Find f(4, 1981). 

Exercise 11 The.function f( n) is defined for all positive integers n 
and takes on non-negative integer values. Also, for all m, n 

(i) f(m + n)- f(m)- f(n) E {0, 1}; 

(ii) f(2) = 0; 

(iii) f(3) > 0; 

(iv) f(9999) = 3333. 

Determine f(1982). 

Exercise 12 Define a function f : N --+ N iteratively by :-

(i) f(1) = 1; 

{ 
f(n-1)-n if f(n-1)>n 

(ii) For n ~ 2, f(n) = f(n _ 1) + n if f(n- 1) ~ n 

LetS= {n EN: f(n) = 1993}. 

(a) Prove that S is an infinite set. 

(b) Find the least member of S. 

11 



(c) If all the members of S are written in ascending order as n 1 < 
. ni+l n 2 < · · ·, show that hm -- = 3. 

i-oa ni 

Exercise 13 A function f is defined on the positive integers by 

(i) f(1) = 1; 
\ 

(ii) f(3) = 3; 

(iii) /(2n) = f(n); 

(iv) f(4n + 1) = 2/(2n + 1)- f(n); 

(v) /(4n + 3) = 3/(2n + 1)- 2/(n). 

for all positive integers n. Determine the number of positive integers 
n, less than or equal to 1988, for which f(n) = n. 

A very important result in mathematics is the following. It is logically 
equivalent to the principle of mathematical induction. 

Theorem 3.2 (Well Ordering Principle) 
Every non-empty subset of N has a least element. 

. • 
We use this result. quite ofteri. For example, if we are trying to establish 
a certain formula for a function on N, we can suppose that it doesn't 
always hold, look at the least member of the set of points where it does 
not hold (extreme case principle), and then attempt to derive some sort 
of contradiction. 

Exercise 14 Let /, g : N ~ N be functions such that f is surjective, 
.g is injective and f(n) ~ g(n) for every n EN. Show that f =g. 

Exercise 15 Suppose f : N ~ N. Prove that if f(n + 1) > f(f(n)) 
for all n EN then f(n) = n for all n EN. 

12 

Note that the well ordering theorem and the induction principle fail in 
Z. But it's common practice to break Z up into its positive and negative 
parts and perform induction or use the well ordering principle on each 
part. Alternatively, induction on Z can be performed something like 
follows : given that the required statement is true for { -n, -n + 
1, ... , -1, 0, 1, ... , n},showthatitistruefor-n-1andforn+l. 
(To get things started in this example, one would show it true for 0.) 

Exercise 16 Find all f : Z ~ Z which satisfy 

(i) f(f(n)) = n; 

(ii) f(f(n + 2) + 2) = n; 

(iii) /(0) = 1. 

The well ordering theorem fails spectacularly on Q and on q+. Never­
theless, there is an important inductive trick here that comes up quite 
often : see Example 4.1. 

As discussed in §4, many of the techniques of this section are applicable· 
there too. 

4 Solving for continuous functions 

In certain cases you will be asked to solve a given functional equation 
with the added information that the answer is known to be continuous. 
This allows some new strategies which we are going to discuss here. 

13 



For a function to be continuous at 
the point x means that if a variable 
point w approaches x then f ( w) ap­
proaches f( x). This can be written 
as 'w--+ x:::::} f(w)--+ f(x)'. 

An a.lJ;ernative, clearly equivalent 
formulation : a function is continu­
ous at x iff( x +h) approaches f( x) 
as h approaches .0. This can be 
written as 'h --+ 0 :::::} f(x +h) --+ 

f(x)'. 

H ... ) L- - - - - - - -

l 
~('H) 

w_.x. 

~(t L--------­

H:•o•h) 

x.+h-> oc: 

Thus there is no 'jump' in the graph off near to x. To say that a 
function is continuous is to say that it is continuous for every point 
x in its domain, in other words, there are no jumps anywhere in the. 
graph of f. 

Next we need the notion of 'dense' set in R : a set is dense if it is very 
thickly spread throughout the real line. Here is the precise definition : 
a set is dense if its complement does not contain any intervals. 

A useful and very common test for denseness could be called the mid­
point teslf : if a set contains arbitrarily large positive and negative 
members, and for any two points in the set the midpoint is also in the 
set, then that set is dense. (Warning : there are sets which are dense 
that fail the midpoint test. Okay?) 

An obvious example of a dense set is the set of rationals Q. Check 
for yourself that Q is dense by definition, and also passes the midpoint 
test. 

It follows that if we know that a function is continuous, and we can 
establish that the required function agrees with a certain continuous 
function on a dense set, then the required function is that function. 
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(This follows from the fact that a continuous function defined on a 
dense set admits at most one extension to the whole set.) 

On the other hand, the following two points should be noted :-

• Continuity plays no role with functions defined on N or Z. 

• Usually continuity plays no role with functional equations on Q. 
Let me be more precise : suppose you are asked to find a function 
defined on Q with certain properties. A priori we can bet that 
this function will be discontinuous, and cannot be extended to a 
continuous function on R. For if it could, the original question 
would surely have asked for a function defined on R with the given 
properties, and expected the solver to realise that the appropriate 
technique would be to work on Q, and then extend by continuity 
to R. Exercise 23 is a demonstration of all of this. 

In the example and the exercises we follow the same strategy : we 
are told the function is continuous, so we establish a formula for the 
function on Q and then deduce that the same formula must hold on all 
of R. The methods for establishing the required formula on Q are an 
extension of those seen in §3. 

Example 4.1 Find all f : R--+ R which are continuous and satisfy 

f(x + y) = f(x) + f(y) 

for all x, y E R. 

Solution : Putting x = y = 0 we get that /(0) = f(O) + f(O), and 
so f(O) = 0. Now a little thought will convince you that we cannot 
determine any more values directly. However, putting x = y = 1 we 
get /(2) = /(1) + /(1) = 2 /(1), and putting x = 2, y = 1 we get 
f(3) = /(2) + /(1) = 3 f(1). In general we have f(n) = n /(1) for 
n EN which we establish by induction. Let us write /(1) =a. 

So f(n) =an for all n EN. But f(O) = f(n) + f(.,.n), and so f( -n) = 
-f(n). The function is odd. It now follows that f(n) = an for all 
n E Z. 
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If m E N and x E R then 

f(mx) = m f(x) (2) 

which is also established by induction. Thus if f!i E Q then 

an= f(n) = f ( m :) = m f (:) (3) 

and so 

f (:)=a: 
In other words, f(x) = ax for all x E Q. It now follows by the con­
tinuity off that f(x) =ax for all x E R. This checks for any a E R 

f(x + y) = a(x + y) =ax+ ay = f(x) + f(y) 

(It was an important problem in the early part of this century to know 
whether these were the only solutions to this functional equation, even 
without the continuity assumption. In fact it was eventually shown. 
that there are discontinuous solutions to this functional equation. This 
had important ramifications in the development of the axiomatics for 
the study of vector spaces. The construction of discontinuous solutions 
goes a little beyond our interests.) • 

The key step in the above example- the argument around (2) and (3) 
- should be•re-read, understood, remembered. 

Exercise 17 Find all continuous functions g : R--+ R which satisfy 

g(x + y) + g(x- y) = 2 g(x) + 2 g(y) 

Exercise 18 Suppose a function f : R --+ R satisfies 

{i) f(1) = 1; 

(ii} f(x + y) = f(x) + f(y) for x, y E R; 
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{iii) f(x) f (~) = 1 for xi= 0. 

Show that f(x) = x for all x E R. 

Exercise 19 Suppose a E R, and f is a continuous function on [0, 1] 
satisfying 

{i) f(O) = 0; 

(ii) f(1) = 1; 

{iii) f (7) = (1- a)f(x) + af(y) for all x,y E [0, 1] with x ~ y . 

Find the possible values of a. 

Recall that a zero of a function f is a point x for which f(x) = 0. 
Sometimes such a number is also referred to as a root, although this 
terminology is usually reserved for polynomials. The most important 
result about continuous functions is possibly the following :-

Theorem 4.2 (Intermediate Value Theorem) 
Suppose f is a continuous function defined on some interval I and 
a, b E I. If f(a) i= f(b) then for every y E (!(a), f(b)) there exists 
x E (a, b) such that f(x) = y. 

If f(a) and f(b) are of different signs then there exists a zero off 
between a and b. • 

I 
Of course the second statement is (the most often used) special case 
of the first. Location of the zeros of a continuous function can be very 
important in solving functional equations because of their 'destructive 
nature' in the equation. 

Exercise 20 Suppose f : R--+ R is continuous and 

f(x + y) f(x- y) = f(x) 2 
_, 

for all x, y E R. Show that either f = 0 or f has no zeros. 
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Exercise 21 Suppose f : R---+ R is continuous and 

f(x + Y) f(x- y) = f(x) 2 f(y) 2 

for all x, y E R. Show that either f = 0 or f has no zeros. 

5 Analytic arguments 

In this section we solve for functions that are not necessarily continuous. 
That doesn't mean that they are discontinuous. What it does mean, 
however, is that our arguments must be purely algebraic and analytic, 
and not use any continuity arguments. So, we can (and do) check for 
injectivity, surjectivity and so on; but we may not, for example, use the 
intermediate value theorem, which is true only for continuous functions. 

Exercise 22 Give an example of a function which changes sign infin­
itely often, but has no zeros. 

Any amount of experience in solving functional equations will tell you 
that 'most' solutions are continuous. But be warned : there are badly 
discontinuous functions which arise as the solutions to quite natural 
functional equations. The remarks immediately after Example 4.1 men­
tioned that.there are discontinuous solutions to the very natural func­
tional equation f: R---+ R, f(x + y) = f(x) + f(y), but that these are 
difficult to construct. Some loose ends there. Now try the following 
problem:-

Exercise 23 Construct a function f : Q+ ---+ Q+ which satisfies 

for all x, y E Q+ . 

f (xf(y)) = f(x) 
y 
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Hopefully this example of a highly discontinuous solution to the func­
tional equation f(xy) = f(x) f(y) makes the possibly disturbing state­
ment that there are discontinuous solutions to the functional equation 
f(x + y) = f(x) + f(y) more plausible. 

We are going to consider various things that you can do. Of course, 
all of these techniques also apply to functions which are known to be 
continuous. 

' 5.1 Recognising straight line equations 

In this section we will see what type of functional equations allow us 
to deduce that the required function is a straight line. 

A straight line has equation f(x) = mx +c. Here m is the slope of the 
straight line and c is the value of the y-intercept, often just called the 
intercept. This form of the equation is often called the slope-intercept 
form. 

A straight line can also be specified by means of the point-slope form. 
If a straight line is known to pass through the point (a, b) and is known 
to have slope m, then its equation is y- b = m(x- a). Okay? 

We will consider the problem of functional equations for straight line 
functions defined on any set. Usually though, for functions defined on 
a set like R, the hypothesis of continuity is necessary to conclude from 
the typical linear functional equation that the function is a straight 
line. 

For example, recall that in Example 4.1 we showed that the functional 
equation f: R---+ R, f(x+y) = f(x)+ f(y) had f(x) = mx as solutions 
for any m E R, but we pointed out that there are other solutions. This 
would not be an issue if the function was defined as a function on Q, Z, 
or N. (This would however affect the admissible values of m, right?) 

Okay. The functions f(x) = mx all pass through the origin, but of 
course there are straight lines that do not. How do we recognise a 
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straight line? Usually by the various ways of characterising the slope. 
For example, if f(yJ=;(x) is constant, then the function is a straight line, 
with that constant being its slope. (Such a function is automatically 
continuous, by the way- okay?) On the other hand, a straight line could 
be indicated by 'constant change' formulas: a formula that shows that 
the amount of change in the function between two points is the same 
for any two points whose distance apart is the same. 

The equations in the following two exercises, after some manipulations, 
indicate a straight line solution because of a constant change formula. 
In Exercise 24, the additional hypothesis of continuity is necessary, 
because any solution the the functional equation f(x + y) = f(x) + 
f(y) is a solution to this one, (check it!) and there are discontinuous 
solutions to f(x + y) = f(x) + f(y). On the other hand, in Exercise 25 
the function is defined on N and so continuity is not an issue. 

Exercise 24 Find all continuous functions g : R--+ R which satisfy 

g(x + y) + g(x- y) = 2 g(x) 

Exercise 25 Find all f : N --+ N satisfying 

f(f(n) + /(m)) = m + n 

for all m, '!EN. 

5.2 Substitutions and transformations 

A substitution is a manipulation with the variables in the functional 
equation. Substitutions have already come up repeatedly; they are the 
bread and butter of functional equations, and I don't believe there is 
much that I can say which is not obvious. I mention them here only 
for the sake of some warnings of the serious shortcomings of sloppy 
substitutions :-

20 

Suppose we are asked to solve an equation like 

f( m + / 2 
( m + 1)) = -/2 

( m + 1) - ( m + 1) 

You might be tempted to say that 

f(m + k) = -k- (m + 1) = -(k + m)- 1 

where k = P(m + 1). And you might be further tempted to put 
n = m + k, so f(n) = -n- 1. One temptation is human, two are 

1 
unforgivable. The first conclusion is valid, but perhaps not useful. The 
second conclusion is invalid. 

Exercise 26 Why? 

If the equation had read 

f(m + f 2 (n + 1)) =- f 2 (n + 1)- (m + 1) 

the argument would have been valid. (Of course this equation is rather 
feeble, but hopefully the point is made.) 

Exercise 27 .Find all f: R--+ R such that 

(i) f(x + y) + f(x- y) = 2/(x) f(y) for all x, y E R; 

(ii) if x--+ oo then f(x)--+ 0. 

Next we deal with transformations. A transformation is a change of 
the function, as opposed to a substitution, which is a change of the 
variable(s). The idea of a transformation is to convert the function into 
a more user-friendly form, achieve something there, and then transform 
back to the original function. 

It follows that all transformations we perform ~~ed to be invertible. 
With this caveat, anything goes. 
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In the following two problems, we apply a logarithmic transformation 
(we take logarithms on both sides of the equation). This is natural to 
do because taking logarithms converts products into sums and powers 
into scalar multiples. Of course, logarithms are inverted by exponents. 

There is one thing to worry about when performing transformations, 
and it is a real issue in these two problems. I hope you spot it; it is 
discussed in the solutions. 

Exercise 28 Suppose f : R--+ R is continuous and 

f(x + y) f(x- y) = f(x) 2 

for all x, y E R. Find f. 

Exercise 29 Suppose f : R --+ R is continuous and 

f(x + y) f(x- y) = f(x) 2 f(y) 2 

for all x, y E R. Find f. 

5.3 Symmetry in two-variable expressions 

Suppose a functional eql.\ation is given where there are two (or possibly 
more) variables appearing in the equation. A very powerful strategy 
we should. attempt is to introduce some symmetry into one side of 
the given functional equation. It follows that, since this side does not 
change when the variables are swopped, neither does the other. The 
two 'other' sides are equal. 

All those words are best expressed in an example. Suppose we have a 
functional equation like 

f(x + y) = x + f(y) 

Now the left hand side is symmetric in the variables..x and y, and so 
we see that 

x + f(y) = f(x + y) = f(y + x) = y + f(x) 
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We now have the new information that x + f(y) 
problem is practically finished. 

Exercise 30 Finish it. 

Now for the real thing. 

Y + f(x). The 

Exercise 31 Let a, /3 E R, not necessarily distinct. Find all functions 
f: R+ --+ R such that 

f(x) f(y) = Y0 f (~) + x(j f (~) 

for all x, y E R+. 

Exercise 32 Consider f : Z --+ Z satisfying 

f(m + f(f(n))) =- f(f(m + 1))- n 

for all m, n E Z. Find f. 

5.4 Fixed points, iterates and orbits 

Definition 5.1 A fixed point of a function is a point x for which 
f(x) = x. 

Necessarily, the point x must belong to bot~ the domain and the codo­
main of the function. It follows that for all practical purposes, we would 
only seek out fixed points for functions whose domain and codomain 
coincide. 

Note that the orbit of a fixed point is just that fixed point. Use of 
fixed points is a very powerful weapon in solving functional equations 
because of the simplifying effect it has in iterativ~ equations. 
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It seems that the use of fixed points is usually in an abstract sense. We 
deduce certain facts about the set of fixed points (for example, given 
an arbitrary fixed point its inverse is a fixed point, or given two fixed 
points their product is a fixed point) and then attempt to derive some 
conclusions or contradictions. In both of the exercises that follow, we 
have information that tells us that there are 'few' fixed points, yet other 
information tell us that there are 'many'. All of this is abstract, in the 
sense that it is very late in the day that we find out what the fixed 
points actually are. 

In both exercises we see a certain symmetry in the defining functional 
equation : this is exactly what should suggest a fixed point argument. 
In both cases, the second condition places a limitation on the possible 
number or location of the fixed points. 

Exercise 33 Find all functions f : ( -1, oo) --+ ( -1; oo) satisfying the 
two conditions 

(i) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x, y E (-1, oo); 

(ii) f(x) is strictly increasing on each of the intervals ( -1, 0) and 
X 

(0, oo). 

Exercise 34 Find all functions f : (0, oo) --+ (0, oo) which satisfy the 
conditions • 

(i) f(xf(y)) = yf(x) for all positive x, y; 

(ii} f(x)--+ 0 as x--+ oo. 

Now we turn to the topic of iterates in functional equations, and start 
with characteristic equations. This quite specialised technique is relev­
ant when the functional equation has only one variable, but includes 
iterates of the function. 
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Recall that a sequence of real numbers is defined by a recurrence re­
lation if there is a known formula relating a term or terms to the suc­
ceeding term, and the first term or terms of the sequence (the initial 
values) are also known. (In general, if the recurrence formula involves 
the m previous terms, then the initial m values need to be given in 
order to properly define the recurrence relation.) 

The following result is standard. For more details and examples, see 
the University of Otago Problem Solving Series Booklet #9. 

Theorem 5.2 
Let a recurrence relation be given by an+2 = Aan+l +Ban where A and 
B are known constants. 

• If ~2 = A~ + B has distinct roots a and /3 then the recurrence 
has the solution an = K an + L~ where K and L are constants 
determined by the initial value conditions. 

• If ~2 = A~+ B has the repeated root a then the recurrence has 
the solution an = (K + nL) an where K and L are constants 
determined by the initial value conditions. • 

What is the relevance of this for us? Here is an example. 

Example 5.3 Find all f: R--+ R satisfying j2(x) = 3f(x)- 2x 

Let us fix an x E R, and keep it fixed throughout. For n ~ 0 let us 
put an = r(x). Then making the appropriate substitutions in the 
functional equation we get the recurrence relation an+2 = 3an+l -
2an. The initial conditions (we need two, right?) are that a0 = x 
and a1 = f(x). We can't hope for any better than that since x is 
any real number. But now the above theorem tells us to examine the 
quadratic ~2 = 3~- 2. (We can call this the characteristic equation of 
the functional equation.) It has roots 1, 2 and so the theorem tells us 
that 

r (X) = an = K + L 2n 
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Now substituting in n = 0 we get that x = K + L and substituting 
inn = 1 we get that f(x) = K + 2L. Taking differences we get that 
L = f(x)- x and hence f(x) = 2x- K. This is it. 

Checking, we get j2(x) = 4x- 3K = 3f(x)- 2x. Magic, or what? • 

It was a surprise to me that the following was the only IMO-submitted 
problem of this nature that I could find :-

Exercise 35 Suppose a, b are positive real n'llmbers. Find all functions 
f : [0, oo) --+ [0, oo) which satisfy 

f(f(x)) + af(x) = b(a + b)x 

Finally we turn to the topic of orbits of points. Sometimes a certain 
member of the domain is clearly of great importance in a functional 
equation, and we would like to know what the orbit of the point looks 
like. 

In the following example, we find the orbit of an unknown but clearly 
important point. Every member of the orbit is expressible as a function 
of the original point, and this enables us to determine what the point 
actually is. 

Exercise 36 Find all functions f : R --+ R such that 

f (x2 + f(y)) = y + (f(x))2 

for all x, y in R. 

Here's a clue for the following rather difficult exercise : the idea is that 
if a is a root of p( x) then so are all the members of the orbit of a under 
the equation f(t) = t 2 - 1 (okay?), and yet p(x), being a polynomial, 
can have only finitely many roots. 

Exercise 37 Describe the family of polynomials whose roots are real 
and for which 

p(x2 -1) =p(x)p(-x) 
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for all x E R. 

6 Just do it 

I couldn't think of a better place for these guys. 

Exercise 38 Find all functions f : R \ {0}--+ R which satisfy 

(i) f(x) = x f (~) for x :f; 0; 

(ii) f(x) + f(y) = 1 + f(x + y) for x :f; -y. 

Exercise 39 Find the functions f : [0, oo) --+ [0, oo) such that 

(i) f(xf(y)) f(y) = f(x + y); 

(ii) f(2) = 0; 

(iii) 0 ~ x < 2 ~ f(x) :f; 0. 
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7 Solutions to the exercises 

1. (a) The function is not injective, since f( -1) = 1 = /(1). The 
function is not surjective, since -1 ft range(!). 

(b) Likewise this function is not injective, but it is surjective : 
given y E (0, oo), put x = ...;y. Then f(x) = y. 

(c) Suppose xi = x~. Since x1, x2 2: 0, we can take square 
roots. Then XI = x2. Thus f is injective. f is surjective as 
in (b). 

(d) f(xl) = f(x2) ~ 2xi + 7 = 2x2 + 7 ~ x1 = x2, and f is 
injective. If y E R, then put x = ~'and f(x) = y. Thus 
f is surjective. 

(e) It's not a function! R wants to be the domain, but the rule 
of assignment has not been specified, or if you prefer has 
been invalidly specified, for x < 0. 

2. (a) f is surjective : given y E R, put x = f(y), then f(x) = 
f(f(y)) = y. 
f is injective : suppose f( x) = f( w), then x = f(f( x)) = 
f(f(w)) = w. 

(b) f is injective: f(a) = f(b) ~ /(1) + f(a) = /(1) + f(b) ~ 
1 +a= /{!(1) + f(a)) = /{!(1) + f(b)) = 1 + b ~a= b. 
It's not at all clear, without more involved work, whether or 
not 1 belongs to the range of f. So surjectivity we'll have to 

• leave unanswered right now. (Later we'll solve this problem 
completely.) 

(c) Obviously f is surjective. 

f(n) = f(m) ~ f(n)+2 = f(m)+2 ~ n-2 = f(f(n)+2) = 
f(f(m) + 2) = m- 2 ~ n = m. Thus f is injective. 

(d) We have f(f(y)) = y + (!(0))2 . Very much like (a) we get 
that f is bijective. 

(e) We have f(f(y)) = yf(l); again, f is bijective. (Here we use 
the fact that /(1)-::/; 0.) 

28 

~ 

.... 

(f) f(a) = f(b) ~ f(f(f(a))) = f(f(f(b))) ~ - /(!(1))- a= 
- /(!(1))- b ~a= b. Thus f is injective. 

The function is surjective, but this is a bit more delicate. 
Put m = 0 in the equation to get f(f(f(n))) = - /{!(1)) -
n. Now - /{!(1)) is a constant, let's denote it by a. So 
f(f(f(n))) =a-n. By substitution we get f(f(f(-a­
n))) = n. (Okay?) So f is surjective. 

3. (c) and (d) are strictly increasing. 

4. Suppose f is strictly increasing and f(xl) = J(x2). Then the 
assumption that x1 < x2 leads to f(xl) < f(x2)· Similarly XI > 
x2 is impossible. Thus x1 = x2. 

A constant function, believe it or not, is increasing : and that's 
as far away from injective as you're going to get. 

5. Clearly f(x) = x is a solution. We claim it is the only solution. 
Suppose that f( x) > x for some x E R. Then, since f is increas­
ing, f(f(x)) 2: f(x), that is, x 2: f(x). This is a contradiction. 
Similarly x > f(x) leads to f(x) 2: x. 

6. (a) is even, (b) is odd, (d) is both even and odd. 

7. From (i) we get that 

f( -2x) 

t(sin(-;x +7r))+t(sin(-;x -1r)) (y=2) 

f (sin ( 7r;)) + f (sin ( 1r
2
x)) 

f(2x) (y = 0) 

and so f is an even function. 

Putting x = 0 in (ii) we get f( -y2) = y f( -y)- y f(y) = 0, since 
f is even. Thus f is 0 on the negative numbers, and since f is 
even, it is zero everywhere. Thus f = 0. 

(Australian Mathematics Olympiad 1990) _ 
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8. J2(x) means l(f(x)); 
l(x) 2 means l(x) l(x); 
I( x2 ) means exactly what it says. 

They're all different. 

9. Put k = n = 0 in (i). Then we get that 1(0) E {0, 1}. 

Suppose 1(0) = 0. Put n = 0 in (i). We get 2l(k) = 2l(k)I(O) = 
0 for all k E Z, and so I = 0. This is one of the solutions to the 
problem. 

Suppose from now on that 1(0) = 1. Putting k = 0 in (i) we get 
that l(n) =I( -n). So it suffices to consider positive integers. 

Put n = 1 in (i). Then 

l(k + 1) = 2 l(k) 1(1)- l(k- 1) 

which shows (by induction) that the values of I are fully determ­
ined once we know 1(1). 

If 11(1)1 ~ 2 then it is clear from 

l(2n) = 2l(n)2
- 1 

that I grows without bound (induction, again) which contradicts 
(ii). Thus 1(1) E { -1, 0, 1}. 

• In the case that 1(1) = -1, a simple induction shows that 
• l(n) = ( -1)n; 

• In the case I( 1) = 1, a simple induction shows that I( n) = 1; 

• In the case 1(1) = 0, one finds that 

1(4m) = 1, 1(4m+1) = 0, 1(4m+2) = -1, 1(4m+3) = 0 

for all m. 

(1989 Australian Inter-State finals- senior division) 
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10. By numerical experimentation we easily find the values in the 
following table :-

012 3 4···X 
0 1 2 3 5 13 
1 2 3 5 13 
2 3 4 7 29 
3 4 5 9 61 

4 5 

y 

We make the following hypotheses :-

• 1(1,y) = y+ 2; 

• 1(2, y) = 2y + 3; 

• 1(3, y) = 2Y+3 
- 3. 

Of course these are all proved by induction, and they have to be 
established in the order listed. We leave it to the reader. Now 

I( 4, 1) = 1(3, I( 4, o)) = 1(3, 13) = 216 
- 3; 

1(4, 2) = 1(3, 1(4, 1)) = 1 (3, 216
- 3) = 2216

- 3; 

I( 4, 3) = 1 ( 3, 2
216 

- 3) = 22216 

- 3. 

We hypothesise that I( 4, n) = 22. - 3 where there are n + 3 2's 
in the stack. Again, this follows by a trivial induction. 

.2 

Thus 1(4, 1981) = 22. -3 where there are 1984 2's in the stack. 

(IMO 1981 Question 6) 

11. It will be convenient to express (i) in the following manner: l(m+ 
n) = l(m) + l(n) +f., where f. E {0, 1} is dependent on m and n. 
In other words, I is nearly linear, except for the error quantity f. 
(f is Greek for 'e' which is short for 'error'.) 
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In fact, the function is superadditive : that is, f( m + n) 2:: f( m) + 
f(n). It is then easy to establish inductively that f (2::7=1 x;) 2:: 
2::7=1 f(x;). 
Let's do some experimentation. 

0 = /(2) 2:: /(1) + /(1), and so /(1) = 0; 
0 < /(3) = /(1) + /(2) + f = t:, and so /(3) = 1; 
/(4) = /(2) + /(2) + f = f, and also /(4) 2:: /(1) + /(3) = 1, and 
so /(4) = 1. 

It seems impossible to decide now whether /(5) = 1 or /(5) = 2. 
Are we in trouble? 

/(6) = /(3)+ /(3)+t: = 2+t:, while /(6) = /(2)+ f(4)+t: = 1+t:. 
(These t:'s are different.) Thus /(6) = 2. 

One might hypothesise, even with incomplete information, that 
f jumps by 1 at every multiple of 3. This is also supported by 
the information that /(9999) = 3333. This is (more or less) what 
we now show. 

We claim that f(3n) = n for all n ~ 3333. Since /(3) = 1 
and f is superadditive, we certainly have /(3n) 2:: n. Suppose 
that /(3n) > n for some n. Then f(3(n + 1)) = f(3n + 3) 2:: 
/(3n) + /(3) > n + 1, and so the required property fails for 
3( n + 1) too. By induction it fails for all successors of 3n which 
are multiples of 3. This contradicts the fact that the required 
property holds for 9999, which is a successor of 3n and a multiple 
of 3. 

We claim also that f(3n- 1) = n- 1 for all n ~ 1111. Certainly 
we haven= f(3n) 2:: f(3n- 1) 2:: f(3n- 3) = n- 1. So suppose 
for a contradiction that f(3n- 1) = n. Then 

3n = f(9n) 

> f(3n- 1) + f(3n- 1) + f(3n- 1) + /(3) 

= n+n+n+1 

3n + 1 

a contradiction as required. Thus f(3n -1) = n -1 for n ~ 1111. 
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Similarly we could show that f(3n- 2) = n- 1 for n ~ 1111, 
but no matter. We have all we need. Putting n = 661 we get 
/(1982) = 660. 

(IMO 1982 Question 1) 
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I 
I 

i, I 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

f(n) 
1 
3 
6 
2 
7 
1 
8 

16 
7 

17 
6 

18 
5 

19 
4 

20 
3 

21 
2 

22 
1 

23 
46 
22 
47 
21 
48 
... 

We notice the following two crucial things in the 
table :-

• The values of n for which f( n) = 1 are 
1, 6, 21, ... which can be determined as fol­
lows : the next term is 3 times the previous 
plus 3. 

• After this occurs, the values of f(n) follow a 
nice alternating pattern until the next occur­
rence of a 1. 

Lets prove some things. 
Let the values of n for which f( n) = 1 be listed in 
order as b1; b2, b3 , . . . . Then we see that 

/(bn+2j-1) 

f(bn + 2j) 

bn- j + 3 

= 2bn + j +3 

(4) 

(5) 

for every n and ior small j. In fact, this pattern 
holds until bn - j + 3 reaches 1, at which point 
we have reached bn+l and the pattern starts over 
again. Now, if bn- j + 3 = 1 then j = bn + 2 and 
so bn + 2j- 1 = 3bn + 3. Thus, bn+t = 3bn + 3, as 
expected. 
Thus we have an inductive formula for bn, but we 
are going to need a closed formula. We have 

bl = 1 

b2 
b3 

b4 

3·1+3=3+3 

3(3 + 3) + 3 = 32 + 32 + 3 

3(32 + 32 + 3) + 3 = 33 + 33 + 32 + 3 

and so we hypothesize that 

bn = 3n-1 + 3. 3n-1- 1 
3-1 
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5 · 3n-l- 3 
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which is established by a trivial induction. 

We then have 

n 
1 
2 
3 
4 
5 
6 
7 
8 

bn 
1 
6 

21 
66 

201 
606 

1821 
5466 

... 

It is clear from this and the formulae (4) and (5) 
that we derive 1993 via (4) only and never via (5), 
the first occurrence being for bs. To derive 1993, 
we need 1993 = bn - j + 3. that is, j = bn - 1990. 
Thus 

bn + 2j- 1 = bn + 2(bn - 1990)- 1 = 3bn - 3981 

This does it all. The set of numbers which map to 
1993 is {3bn - 3981 : n ~ 8} which is an infinite 
set; its first member is 3 · b8 - 3981 = 12417; and 
the ratio of the terms approaches 3. 

(Proposed at the IMO 1993) 

13. The reader should calculate the values of f{n) for 1 ~ n ~ 30. 
The formulas and the results obtained suggest some connection 
with binary representations of the numbers involved. If we do our 
calculations in binary, we get the following :-
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I, 

!I 
II 
I 

I , 

n f(n) 
1 1 

10 1 
11 11 

100 1 
101 101 
110 11 
111 111 

1000 1 
1001 1001 
1010 101 
1011 1101 

... 

which suggests that the general formula for f 
should be that f(n) is the 'mirror' of n. 
Of course we prove this by induction, in steps 
of 4. The result has already been seen to be 
true for 1 :::; n :::; 7. Suppose that is is true 
for 1, 2, ... , 4n- 1; we need to establish it for 
4n, 4n + 1, 4n + 2, 4n + 3. 
Suppose n has the binary representation 10'2 ... O'k 
where 0'; E {0, 1}. Then 

2n = 010'2 ... O'kO 

2n + 1 = 010'2 ... O'k 1 

4n = 10'2 ... O'kOO 

4n + 1 = 10'2 ... O'k01 

4n+2 = 10'2 .. : O'k 10 

4n+3 = 10'2···0'kll 
Using the induction hypothesis and the given formulas, we get 

f(4n) = f(2n) 

/(10'2 ... O'kO) 

OO'k ... 0'21 

OOO'k ... 0'21 

f(4n + 1) 2f(2n + 1)- f(n) 

2. /(10'2 ... 0',~:1)- /(10'2 .. . O'k) 

2 ·10'k ... 0'21- O'k .. . 0'21 

10'k ... 0'21 + 10'k ... 0'21- O'k .. . 0'21 

10'k ... 0'21 + 10 ... 00 

100'k ... 0'21 

f(4n + 2) f(2n + 1) 
/(10'2 ... O'k 1) 

10'k ... 0'21 

010'k ... 0'21 
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f(4n+3) 3/(2n + 1)- 2/(n) 

3. /(10'2 ... O'k1)- 2/(10'2 ... O'k) 

3 ·10'k ... 0'21- 2 ·O'k .. . 0'21 

10'k ... 0'21 + 10'k ... 0'21 + 10'k ... 0'21 

+O'k ... 0'21 + O'k ... 0'21 

10'k ... 0'21 + 10 ... 00 + 10 ... 00 

110'k .. ·0'21 

thus completing all the induction steps. 

Thus we will have /( n) = n if and only if n is a palindrome when 
expressed in binary representation. Since 210 = 1024 < 1988 < 
2048 = 211 , we are interested in palindromes of length at most 
11. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 
1 
2 
2 
4 
4 
8 
8 

16 
16 
32 

A simple counting argument shows that the num­
ber of palindromes is as indicated. Further­
more, 1988 = 11111000100, and so there are 
two palindromes between 1988 and 2048, namely 
11111011111 and 11111111111, which should be 
excluded from our count. Thus the required 
amount is 

1 + 1 +2+2+4+4+8+8+ 16+ 16+32- 2 = 92 

(IMO 1988 Question 3) 

14. Suppose that f(n) ::j; g(n) for some n E N. Then A = {g(n) : 
J( n) ::j; g( n)} is non-empty. By the well ordering principle it has 
a least element, g(no). Since f is surjective, there exists n1 E N 
such that f(nl) = g(no). Then 

g(nl):::; /(nl) = g(no) </(no) 
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and so no I n 1 . Then by injectivity of g we have that g( n0 ) I 
g(n!). Thus 

g(n1) < f(n!) = g(no) </(no) 

and so g(n!) E A, and g(n!) < g(n0 ), contradicting the choice of 
g(no) as being the least element there. 

(Romanian selection test for IMO team 1986) 

15. Note that range(!), because it is a non-empty subset of N, has a 
least member. Since 

!(2) > /(/(1)) ' /(3) > /(/(2)) ' 0 0 0 

it is not any of /(2), /(3), .... Thus /(1) is the least member of 
range(!), and it is determined uniquely i.e. no other number is 
mapped to /(1) by f. Since /(1) ~ 1 we have f(n) > 1 for n > 1. 
So we can, by restriction, consider the function 

f: N \ {1}--+ N \ {1} 

Now the exact same argument as before yields the fact that /(2) 
is the least member of the range of this function. 

Thus /(1) < /(2) and f(n) > 2 for n > 2 and we now consider 
the function 

f: N \ {1,2}--+ N \ {1,2} 

Iterating (the inductive details are left to the reader) we see that 

/(1) < /(2) < !(3) < 0 0 0 

and in particular that f( n) ~ n for all n E N. 

Now assume that f(n) > n for some n E N. Then f(n) ~ 
n + 1 and so J(f(n)) ~ f(n + 1), since f has been shown to be 
increasing. But this last statement contradicts the hypothesis. 

Thus f(n) = n for all n EN. 

(IMO 1977 Question 6) 
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16. We have from (iii) that /(0) = 1 and then (i) implies that 0 = 
/(/(0)) = /(1). We know what /(0) and /(1) are, so putting 
n = -2 and n = -1 in (ii) we get that /(3) = -2 and /(2) = -1. 
Then using (i) we get that /(-2) = 3 and /(-1) = 2. These 
results suggest that /( n) = 1- n which we establish by induction. 

The statement f(n) = 1- n is true for { -2, -1, 0, 1, 2, 3}. Sup­
pose the statement is true for { -2k, -2k+ 1, ... , 0, 1, ... , 2k, 2k+ 
1}. To complete the induction step we need to establish that the 
statement is true for { -2k- 2, -2k- 1, 2k + 2, 2k + 3}. Now via 
the induction hypothesis and (ii) we have that 

/(2k+2) = /(/(-2k+1)+2) = -2k-1 
f(2k + 3) = !(!( -2k) + 2) = -2k- 2 

/(-2k-1) = /(/(2k+2)) = 2k+2 
/(-2k-2) = /(/(2k+3)) = 2k+3 

and that completes the proof. 

(Putnam Mathematics Competition 1992) 

17. Putting x = y = 0, we get 2g(O) = 4g(O), and so g(O) = 0. 
Putting x = 0, we get g(y) + g( -y) = 2g(y), and so g(y) = g( -y) 
i.e. g is even. 

Let us put g(1) =a. Then putting x = y = 1, we get g(2)+g(O) = 
2g(1) + 2g(1), and so g(2) = 4a. Putting x = 2, y = 1 we get 
g(3) + g(1) = 2g(2) + 2g(1), which simplifies to g(3) = 9a. 

We hypothesise that g(n) = an2 for all n EN. This is of course 
proved by induction. Suppose it is true for 1, 2, ... , n. Then 
putting x = n, y = 1 we get 

g(n+1)+g(n-1) 

g(n + 1) 
2g(n) + 2g(1) 

2an2 + 2a- a(n- 1)2 

an2 + 2an +a 

= a(n+1) 2 

In fact, we can improve this result : we can show 

g(nx) = n2g(x) 
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for all n E N and all x E R. The induction is identical, and so is 
omitted. Hence 

an 2 = g(n) = g ( m :) = m2 g (:) 

and so 

( n) n
2 

g m =a m2 

Thus g(x) = ax2 for all x E Q+. But since the function is even, 
it follows that g( x) = ax2 for all x E Q. 

It now follows by the continuity of g and the denseness of Q in 
R that g(x) = ax2 for all x E R. 

We check this solution : 

g(x + y) + g(x- y) a(x + y) 2 + a(x- y) 2 

2ax2 + 2ay2 

2g(x) + 2g(y) 

and so this is a valid solution for any a E R. 

18. From Example 4.1 we have that (i) and (ii) imply that l(x) = x 
for all x E Q. To make the desired conclusion, it suffices to show 
that the function is continuous. 

We need to show that if h --+ 0, then l(x +h) --+ l(x). But 
l(x +h)= l(x) + l(h), so it suffices to prove that l(h)--+ 0 . . 
First not~ that if a, bare of the same sign, then Ia + bl = Ia I+ lbl. 
Now (iii) implies that for any x # 0, l(x) and I(~) are of the 
same sign. Hence 

ll(x+~)l = k(x)+l(~)l 
ll(x)l+jl(~)l 

> 2dll(x)ll1(~)1 
2 
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by the arithmetic-geometric mean inequality. Now the range of 
x + ~ as x varies through R is (-oo, - 2] U [2, oo). Thus, we have 
shown that II(Y)I ~ 2 if IYI ~ 2. 

Thus if IYI :5 ~ then It I ~ 2 and so 

1 = k(y) I (~)I ~ II(Y)I . 2 

that is, t ~ II(Y)I. 

Now if IYI :5 ~then t ~ 11(2y)l = 2II(Y)I and so~~ II(Y)I. 

By induction, II(Y)I:::; 2
1
,. "forlyl :5 2

1,.. Hence I( h)--+ 0 ash--+ 0. 

(Proposed at the IMO 1989) 

19. Using 0 and 1 in (iii) we find I (t) =a; 
using 0 and ~in (iii) we find I (i) = a2 ; 

using t and 1 in (iii) we find I (i) = (1- a)a +a= 2a- a2 ; 

using ~ and i in (iii) we find I (t) = (1- a)a2 + a(2a- a2) = 
3a2 - 2a3 • 

Thus a= 3a2 -2a3
, or -2a (a-~) (a-1) = 0, or a E {0, t, 1}. 

Suppose a= 0. Then I(~) = l(x) whenever 0:::; x:::; y:::; 1. 
Put x = 0; we get l(y) = 0 for 0 :5 y:::; t· Now put x = t; we 
get l(y) = 0 for ~ :5 y :5 i. Iterate this procedure; inductively 
we find that l(y) = 0 for 0 :::; y < 1. This is a contradiction to 
the continuity of I and the fact that 1(1) = 1. 

A similar argument eliminates the possibility that a = 1. 

Hence a = ~· It is then clear that l(x) = x provides a solution 
to the equation, and so a = ~ is admissible. 

(Modified from a problem proposed at the IMO 1989) 

20. Putting x = y, we get l(2x) 1(0) = l(x)2 . It follows that if 
1(0) = 0, then l(x) = 0. We get the trivial solution I= 0. So 
let us now suppose that 1(0) :j; 0. 

Now if 1(2x) = 0 then l(x) = 0. Repeating,,we would get that 
I(~) = 0, and so on. Thus we have a se"quence of numbers 
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x, ~' ~, ... which get close to 0 and which map to 0. By the 
continuity of I, 1(0) = 0. This is a contradiction, and so l(x) ::p 0 
for all x E R. 

21. Putting x = y = 0, we get 1(0)2 = 1(0)4 , and so 1(0) E 
{ -1, 0, 1}. 

Putting x = y, we get 1(2y) 1(0) = l(y)4 . It follows that if 
1(0) = 0, then l(y) = 0. We get the trivial solution I = 0. So 
let us now suppose that 1(0) ::p 0. 

Now if l(2y) = 0 then l(y) = 0. Repeating, we would get that 
I(~) = 0, and so on. Thus we have a sequence of numbers 
y, ~' ~' ... which get close to 0 and which map to 0. By the 
continuity of I, 1(0) = 0. This is a contradiction, and so l(y) ::p 0 
for ally E R. 

22. Consider the function l(x) = { -~ ~i: ~ ~ 

23. Putting x = 1, we get J2(y) = lip. This shows that the required 
function is bijective. Putting x, y = 1 we get P(1) = 1(1). By 
the injectivity we have 1(1) = 1. Thus P(Y) = ~· 

Suppose wE Q+, and w = l(y). Then l(w) = 12 (y) =~·Thus 

l(xw) = l(xl(y)) = J~:c) = l(x)l(w). (A function with this 
property is called a multiplicative homomorphism.) 

We have shown that the required function satisfies the following 
two 'natural' properties :-

12(y) 

l(xy) 

1 
y 

l(x)l(y) 

Conversely, one can easily check that a function with these two 
properties satisfies the given functional equation. (In actual fact, 
one can start the solution to the problem with this observation; 
all the stuff above not being needed for the solution.) Therefore 
we focus on these two equa.\.ions rather than the given one. 
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Every member of Q+ can be expressed in the form f1 pf; where 
the p; are primes and a:; E Z. (Fractions are derived via negative 
a:;.) By the homomorphism property of the required function I, 

I (IIpfi) = III(p;ti 

It therefore suffices to determine the value of the function on the 
primes. There are many possibilities. The most elementary is as 
follows:-

. 1 1 
1(2) = 3, 1(3) = 2' 1(5) = 7, 1(7) = 5' ... 

and then, as indicated, extend to all of Q+ by means of the 
homomorphism property. 

We need to verify that this function does satisfy the equations. 
This is more an exercise in notation than one with serious math­
ematical content. It is easy to verify that the function is well 
defined (that is, if a member of Q+ is represented in two different 
ways then the function can recognise this and assigns the same 
value under either representation). By definition the function 
satisfies the homomorphic property. Finally, 

( 
1 )"'i 1 

12 (IIpf•) =II 12 (p;)"'i =II Pi = flpfi 

1.e. P(Y) = ~· 

(IMO 1990 Question 4) 

24. We are going to show that g(x) = mx + c where m and c are 
arbitrary. So suppose that g(O) = c and g(1) = m +c. We are 
going to analyse the set g = {x: g(x) = mx + c}. 

Certainly 0, 1 E g by the way we've set things up. Putting 
x = y = 1 we get that g(2)+c = 2(m+c), or g(2) = m2+c, and 
so 2 E g. Proceeding by induction, we show that N C g. Then 
by putting x = 0, y = n we find that Z C g_. 
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By substitution we have that g( x) + g(y) = 2g ( x~y) from which 
it easily follows that if x, y E g then ~ E g. Thus g is a dense 
set. It now follows by the continuity of g that g(x) = mx + c for 
all x E R. This does check :-

g(x+y)+g(x-y) = m(x+y)+c+m(x-y)+c = 2(mx+c) = 2g(x) 

25. Suppose f(n) = f(m). Then 

26. 

n + m = f(f(n) + f(m)) = f(f(n) + f(n)) = n + n 

and so n = m. Thus f is injective. Therefore 

f(f(n) + f(n)) = n + n = n- 1 + n + 1 = f(f(n -1) + f(n + 1)) 

and so by the injectivity we get that 

f(n) + f(n) = f(n- 1) + f(n + 1) 

and so 
f(n)- f(n- 1) = f(n + 1)- f(n) 

Thus the slope of the function is constant, so 

f(n) = bn + c 

f'?r some b, c. Substituting into the original expression, 

m+n = f(f(n)+ f(m)) = f(bn+c+bm+c) = b2(n+m)+2bc+c 

from which it follows that b = 1, c = 0. Thus f(n) = n. 

(There are numerous solutions to this problem, most of them 
miserable. This very elegant solution is due to Richard Schneider.) 

(Proposed at the 1988 IMO) 

For the second conclusion, n needs to be any number. In other 
words, m + k needs to be arbitrary. This would be fine if both 
m and k were arbitrary, but they are not. k is a function of m, 
and hence m + k is not arbitrary. Even though m was arbitrary, 
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k might act in such a way as to cause m + k to not be arbitrary. 
In this example, if we close our eyes and pretend that our final 
answer is correct, then we can see that k = j2(m + 1) = m + 1, 
and so m + k is never even, so m + k is not arbitrary. 

27. We have after making the substitution a= x- y that 

f(a + 2y) + f(a) = 2f(a + y) f(y) 

for any y E R. (This is not a random substitution - it is done to 
make f( a) the subject of the equation. In the original equation, 
f( x) cannot immediately be made the subject - we cannot divided 
by 2/(y) there, since this may be division by 0.) 

Allowing y--+ oo (and keeping a fixed), we get from (ii) that 

O+f(a)=2·0·0 

This happens because as y --+ oo so too a + 2y --+ oo and a + y --+ 

oo. Thus f(a) = 0. Since a was any fixed real number, we have 
that f(x) = 0 for all x E R. 

(Proposed at the 1985 IMO) 

28. Clearly f = 0 is a solution. For non-trivial solutions, we have from 
Exercise 20 that f has no zeros. It now follows that f is always 
positive or always negative (for otherwise by the intermediate 
value theorem f would have a zero). Actually, iff is a solution to 
the problem then so too is- f, so we may suppose that f(x) > 0 
for all x E R. 

With this information, it is now legal to transform by taking 
logarithms. (Recall that logarithms are only defined for posit­
ive numbers.) Let g(x) = ln(f(x)). Then the original function 
equation is transformed to 

g(x + y) + g(x- y) = 2g(x) 

which has previously been considered in Exercise 24. The solution 
to this function equation is g(x) = mx+c for any m, c E R. Thus 

ln(f(x)) = mx + c 
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and so by taking exponents on both sides 

f(x) = emx+c = K emx 

where K = ec is now some positive constant. But recalling that 
iff is a solution then so too is - f, and recalling that f = 0 is a 
solution, we get 

f(x) = Kemx 

for any K, m E R. This does check :-

f(x + y) f(x- y) K em(x+y) K em(x-y) 

K2e2mx 

(K emx)2 

f(x) 2 

29. Clearly f = 0 is a solution. For non-trivial solutions, we have 
from Exercise 21 that f has no zeros. It now follows that f 
is always positive or always negative. If f is a solution to the 
problem then so too is - f, so we may suppose that f( x) > 0 
for all x E R. Let g(x) = ln(f(x)). Then the original functional 
equation is transformed to 

g(x + y) + g(x- y) = 2g(x) + 2g(y) 

which has previously been considered in Exercise 17. The solution 
to this function equation is g(x) = ax2 for any a E R. Thus 

ln(f(x)) = ax2 

and so by taking exponents on both sides 

2 2 
f(x)=eax =Kex 

where K = ea is now some positive constant. But recalling that 
if f is a solution then so too is - f, and recalling that f = 0 is a 
solution, we get 

f(x)=Kex• 

' 
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for any K E R. Lets check :-

f(x + y) f(x - y) Ke(x+y) 2 Ke(x-y)2 

K2ex•+y• 

(Kex•f (KeY
2f 

f(x) 2 f(y) 2 

only if K 2 = K 4 , that is, K E { -1, 0, 1}. So the solutions are 

f(x) = ex•, f(x) = 0, f(x) = -ex
2 

(Proposed at an IMO) 

30. Since x + f(y) = y + f(x), we get that f(y)- f(x) = y- x, in 
other words, f is a straight line function with gradient 1. Thus 
the general solution is f(x) = x + c, which checks. 

31. Let us first consider the case where a = /3. Then f(x) f(y) = 
y<>J(~) +x0f(~), and so f(x) 2 = 2x0f(~). Thus 

and so 

f(x) f(y) 
ya f( X )2 + X a f(y)2 

2x<> 2y<> 

~ 2X0 Y0 f(x)f(y) (ya f(x))2 + (xa f(y))2 

0 = (Y0 f(x)) 2 - 2ya f(x)x 0 f(y) + (xa f(y)) 2 

(ya f(x)- X a f(y) )2 

~ 0 = Ya f(x)- Xa f(y) 

Thus y<> f(x) = f(y)x 0
, and so f = 0 or f(x) = K X0 for some 

constant K. ( K is determined by choosing any y for which f(y) =I 
0.) In the latter case we need to determine the value of K. 

By substituting into the equation f( x )2 = 2x0 f ( ~), we get that 
K 2 x20 = 2xa K (~t and so K = 21-a. 
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We need to check this solution : 

y"f(i) +x"f(i) y" 21-a (i) <> + x" 21-a (i) <> 

2 · 21-"x"y"2-<> 

21-"x" · 21-"y" 
f(x)f(y) 

We now consider the case where a :f; /3. Using symmetry, we get 
that 

y" f ( ~) + x~ f ( ~) = x" f (i) + ~ f ( ~) 
Hence 

(x~- x")f (~) = (~- y")f (i) 
Therefore f = 0 or f (~) = K (x~- x") for every x E R+ and 
some constant K. ( K is determined by choosing any y for which 
f (~) :f; 0.) Then 

f(x)f(y) y" f ( ~) + X~ f ( i) 
K y"(x~- x") + K x~(~- y") 

K(x~~- x"y") 

and so f(x)f (~) = 0; thus f has many zeros. However, the 
function y~ - y" has only one zero. Thus f = 0 is the only 
solution ·in this case. 

(Proposed at the IMO 1994) 

32. We want to introduce symmetry into the given expression so we 
replace m with j2(m) and we get 

f(f2 (m) + f 2 (n)) =-/ 2(!2 (m) + 1)- n 

and now by the symmetry this must also be equal to 

- f2(!2(n) + 1)- m 

' 
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Hence 
m- n = / 2 (P(m) + 1)- f 2 (!2 (n) + 1) 

But, from the original equation, 

/
2
(/

2 (n) + 1) = f(-!2(1 + 1)- n) = f(-k- n) 

where k = j2(2). Thus 

m- n = f(-k- m)- f(-k- n) 

::::} m + k = f( -k - m) - f(O) 

::::} -n = f(n)- f(O) 

::::} f(n) = -n + f(O) 

for all n E N. It now follows that 

f 2(n) = f(-n + f(O)) = -(-n + f(O)) + f(O) = n 

and hence 

f(m + n) = f(m + f 2(n)) =- f 2(m + 1)- n = -(m + n)- 1 

Thus 
f(n)=-n-1 

33. The second condition implies that the fixed point equation f(x) = 
x has at most three solutions : one in ( -1, 0), 0 itself, and one 
in (O,oo). Suppose u E (-1,0) is a fixed point of f. Putting 
x = y = u in the functional equation, we have f(2u + u2 ) = 
2u + u2

• Moreover, 2u + u2 E ( -1, 0). (Inspect the graph of the 
quadratic 2u + u2 

.) Hence 2u + u2 = u, but then u fl. ( -1, 0), a 
contradiction. 

Likewise there can be no fixed point in (0, oo ). Thus the only 
possible fixed point is 0. 

Are there any fixed points? Yes! Putting x =yin the functional 
equation we get that x + (1 + x)f(x) is a fixed point for any x, 
and hence x + (1 + x)f(x) = 0 for any x. Thus 

-x 
f(x)=1+x 
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for any x. It remains to check that all is well i.e. that this function 
does indeed satisfy the given properties. Certainly '<:) = i+~ is 
strictly decreasing and (ii) is satisfied. Also by substituting into 
(i) we get ~ on both the left and right hand sides- you should 
check this. Thus all is well. 

34. We have J2(y) = y /(1), and since /(1) ::f 0, it follows that f 
is bijective. Hence there is a value y such that f(y) = 1. This 
together with x = 1 in (i) gives 

/(1 ·1) = /(1) = y/(1) 

and since /(1) > 0 by hypothesis, it follows that y = 1, and so 
/(1) = 1. When we set y = x in (i) we get 

f(xf(x)) = xf(x) 

for all x > 0. Hence xf(x) is a fixed point of f. 
Now if x and y are fixed points off then (i) implies that 

f(xy) = yx 

so xy is also a fixed point of f. Thus the set of fixed points is 
closed under multiplication. Furthermore, if x is fixed point then 

1 = /(1) = f (~f(x)) = x f (~) 
and so J 0·) = ~, that is, ~ is a fixed point. The set of fixed 
points is closed under inversion. 

Thus if there are any fixed points besides 1, then either it or 
its inverse is bigger than 1 (and is a fixed point), and then the 
powers of this number become arbitrarily big and are all fixed 
points. This contradicts (ii). 

Thus 1 is the only fixed point, and since x f( x) is a fixed point 
for every x, we get that 1 = xf(x), or f(x) = ~-
This checks. 

(IMO 1983 Q1) 
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35. Fix x and keep it fixed throughout. 

The characteristic polynomial is 

0 = A2 + aA- b(a +b) 

= (A+a+b)(A-b) 

so A= -a- b or A= b, and so 

r(x) = o:bn + {3( -a- bt 

for some quantities o:, {3. By putting n = 0 and n = 1 respect­
ively, we get 

X = o:+{3 

f(x) = o:b- f3(a +b) 

Now r : [0, oo)--+ [0, oo) and so we necessarily have that 

0 < r(x) = 0: (-b-)n + (-ltf3 
- (a+ b)n a+ b 

Letting n--+ oo, we have that ( a.h-) n --+ 0 and so it must be that 

{3 = 0. 

Thus o: = x and f(x) = bx, which checks. 

(Proposed at the IMO 1992) 

36. Putting y = 0, we get 

f(x 2 + /(0)) = f(x) 2 

Putting x = 0, we get 

/2(y) = y + /(0)2 

The quantity /(0) appears to be important. Let us set it equal 
to q. Thus 

/(0) 
f(x 2 + q) = 

/2(y) = 
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f(x) 2 

y+ q2 

(6) 

(7) 
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We are going to examine the orbit of 0. This is suggested by the 
previous three equations, which indicate that all elements in this 
orbit will be expressible in terms of q alone. This might enable 
us to determine q. 

• /{0) = q 

• f(q) = P(O) = q2 , from (8). 

• f(q
2
) = J3(0) = P(f(O)) = J2(q) = q + q2 = q2 + q, from 

(8). But the quantity q2 + q suggests making use of (7) in 
the next step. 

• /
4 (0) = P(P(O)) = J2(q2) = 2q2 from (8); 

J4(0) = f(P(O)) = f(q 2 + q) = f(q) 2 = q4 from (7). 
Thus 2q2 = q4, and q E {0, J2, -J2}. 

• /5(0) = P(P(O)) = J2(q2 + q) = q2 + q + q2 = 2q2 + q = 
q4 + q, again suggesting use of (7) in the next step. 

• f 6(0) = J2(!4 (0)) = J2(2q2) = 3q2 from (8); 
/6(0) = /{!5(0)) = f(q4 + q) = f(q2)2 = (q2 + q)2 from (7). 

Thus 3q2 = ( q2 + q )2 = q4 + 2q3 + q2 , which is not satisfied 
for either q = J2 or q = -J2. 

We conclude that q = 0. Let's rewrite the equations :-

/(0) 
f(x2) 

!2(y) 

0 

f(x)2 

y 

(9) 

(10) 

(11) 

It is clear from (11) that f is surjective : given w E R, put 
y = f(w), and then f(y) = w. Then for any x E R, 

f(x 2 + w) = f(x 2 + f(y)) 

y+f(x)2 

f(w) + f(x) 2 

> f(w) 

which shows that f is increasing. 
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Referring to Exercise 5 we see that f(x) = x is the only possible 
solution. This does check. 

(IMO 1992 Question 2) 

37. The desired polynomials are 0 and those of the form 

Pj,k,l(x) = (x2 + x)i (cP- x)k(¢"- x)1 

where cP = ¥, ¢" = l-/& are the roots of x2 - x- 1 = 0 and 
j, k, I 2:: 0 are integers. 

It is straightforward to check that the Pj,k,l(x) do satisfy the 
functional equation p( x 2- 1) = p( x )p( -x ). To see how they were 
found, observe that if o: is a root of p(x), then o:2 -1 is also. But 
then (o:2 - 1)2 - 1 is, in turn, a root; more generally, each term 
of the iterative sequence 

o:, 0:2- 1, (o:2- 1)2 -1 (12) 

is a root of p(x). Since p(x) has only finitely many roots, this 
sequence must eventually become periodic. The easiest way for 
this to happen is to have o: 2 -1 = o:, which yields o: = cjJ oro: = ¢. 
In this case p(x) is divisible by cjJ- x or¢- x, respectively. 

The next case to consider is ( o: 2 - 1 )2 - 1 = o:. Besides cjJ and ¢, 
this fourth degree equation for o: has roots 0 and -1. Note that 
if either 0 or -1 is a root of p(x), then so is the other, because 
02 - 1 = -1 and (-1)2 - 1 = 0. So in this case p(x) is divisible 
by x2 +x. 

We now show that it is not necessary to study any further cases, 
that is, that every non-zero polynomial p(x) satisfying the given 
functional equation is one ofthe Pi,k,l(x). Note that if p(x) satis­
fies the given functional equation and is divisible by Pj,k,l(x ), then 
the polynomial P _Pk(7tx) also satisfies the functional equation. So 

J, • 

we can divide out by any factors cjJ- x, ¢- x and x2 + x that p( x) 
may have, and assume that p(x) does not have any of -1, 0, c/J, ¢ 
as roots. 
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38. 

If p( x) is nonconstant, let o:0 be the smallest root of p( x). (Ex­
treme case principle!) If o:0 > </J, then o: 0

2 - 1 > o: 0 , and the 
sequence (12) will be strictly increasing, yielding infinitely many 
roots, a contradiction. If"¢; < o:o < </J, then o: 0

2 - 1 < o: 0 , 

contradicting our choice of o: 0 . Thus, we must have o:0 < "¢;. 
However, since o:0 is a root of p(x), p(x) has a factor x- o:o, 
and so p( x2 - 1) has a factor x2 - 1 - o:0 • Since p( x) has real 
roots, p( x2 - 1) = p( x )p( -x) factors into linear factors, hence 
1 + o:o ~ 0, and we have -1 < o:o < "¢;. 
The third term in the sequence (12) is 

(o:o 2
- 1)2

- 1 = o:o + ((o:o 2
- 1)2

- 1- o:o) 

o:o + o:a(o:o + 1)(o:o- </J)(o:o- "¢;) 

Because -1 < o:0 <"¢;,the product on the right is negative, which 
contradicts our choice of o:0 . We conclude that p( x) is constant. 
The functional equation now shows that p(x) = 1 = Po,o,o(x), 
and we are done. 

(The Wohascum County Problem Book #112) 

2/(x) = 2xf(~) 

x[!(~)+!(~)] 
X [1+/(~)] 
X [1+~/(~)] 
x+2f(~) 
x+ 1+f(x) 

and so f( x) = x + 1. Lets check :-

(i) f(x) =X+ 1 = 1 +X= X(~+ 1) =X f (~); 
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(ii) f(x) + f(y) = x + 1 + y + 1 = 1 + f(x + y). 

(Australian Mathematics Olympiad 1991) 

39. It is easy to see that x ~ 2 <==> f(x) = 0. Furthermore, with 
0 ~ y < 2 w~ have that 

x~2-y <==> x+y~2 

<==> f(x + y) = 0 

<==> f(xf(y)) f(y) = 0 

<==> f(xf(y)) = 0 

<==> X f(y) ~ 2 
2 

<==> X~ f(y) 

and so it must be that 2- y = ly) for 0 ~ y < 2. 

Thus the only possible solution for the equation is 

!( ) = { 2.:y ~f 0 ~ y < 2 
y 0 If y ~·2 

It is necessary to check that this formula is in fact a solution 
to the given equation. Clearly (ii) and (iii) are satisfied, so it 
remains only to check (i). 

We will need the following key observation : if 0 ~ y < 2 then 
x + yo2 <==> xf(y) o2, where o denotes any of the the five order 
relationships. To see this : if x +yo 2, then x o 2 - y, and so 
xf(y) o (2- y)f(y) = 2. (Here we use the fact that y < 2.) 
There are now three possibilities :-

• y ~ 2. Then both sides of the functional equation are 0. 

• y < 2 and x + y ~ 2. Then we have seen that xf(y) ~ 2 and 
so again both sides are 0. 

• x + y < 2. Then xf(y) < 2 and so 

f(xf(y)) f(y) = 
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2- xf(y) 2- y 
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(IMO 1986 Question 5) 
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2 2 
2- x-2- 2- Y 2-y 

4 

2(2- y)- 2x 
2 

2- (x + y) 
f(x+y) 
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