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INTRODUCTION 

The South African l'vlathematical Society has the responsibility for se­
lecting and training teams to represent South Africa in the annual 
International Mathematical Olympiad ( Il\10). 

The process of finding a team to go to the IMO is a long one. It be­
gins with a nationwide Mathematical Talent Search, in which students 
are sent sets of problems to solve. Their submissions are marked and 
returned with comments, full solutions and a further set of problems. 
The principle behind the Talent Search is straightforward: the more 
problems you solve, the higher up the ladder you climb and the closer 
you get to selection. 

The best students in the Talent Search are invited to attend Mathe­
matical Camps in which specialised problem-solving skills are taught. 
The studeuts also write a series of challenging Olympiad-level problem 
papers, leading to selection of a team of six to go to the IMO. 

The bookets in this series cover topics of particular relevance to Math­
ematical Olympiads. Though their primary purpose is preparing stu­
dents for the International Mathematical Olympiad, they can with 
profit be read by all interested high school students who would like to 
extend their mathematical horizons beyond the confines of the school 
syllabus. They can also be used by teachers and university mathemati­
cians who are interested in setting up Olympiad training programmes 
and need ideas on topics to cover and sample Olympiad problems. 

Titles in the series published to date are: 

No. 1 The Pigeon-hole Principle, by Valentin Goranko 
No. 2 Topics in Number Theory, by Valentin Goranko 
No. 3 Inequalities for the Olympiad Enthusiast, by Graeme West 
No. 4 Grapli Tlleory for the Olympiad Enthusiast, 

by Graeme West 
No. 5 Functional Equations for the Olympiad Enthusiast, 

by Graeme West 
No. 6 Mathematical Induction for the Olympiad Enthusiast, 

by David Jacobs 

Details of the South African Mathematical Society's Mathematical Tal­
ent Search may be obtained by writing to 

Mathematical Talent Search 
Department of Mathematics and Applied Mathematics 
University of Cape Town 
7700 RONDEBOSCH 

The International Mathematical Olympiad Talent Search is sponsored 
by the Old Mutual. 

J II Webb 
.June 1996 

Graph Theory for the Olympiad Enthusiast 

Graeme West 

Some citizens of Konigsberg 
Were walking on the strand 

Beside the river Pregel 
With its seven bridges spanned 

'0 Euler, come and walk with us', 
Those burghers did beseech. 

'We'll roam the seven bridges o'er, 
And pass but once by each'. 

'It can't be done', thus Euler cried. 
'Here comes the Q.E.D. 

Your islands are but vertices 
And four have odd degree'. 

From Konigsberg to Konig's book 
So runs the graphic tale 

And still it grows more colorful 
In Michigan, and Yale. 

Blanche Descartes, The Expanding Universe 

This booklet is intended as an introduction to elementary graph theory for the serious 
mathematics student participating in the International Mathematics Olympiad training 
programme. While the theory that is developed in these pages is elementary, some of 
the problems that arise can be quite challenging, so it is hardly surprising that graph 
theory problems often feature in mathematics competitions. 

Each piece of theory is followed by some exercises which start with some that are 
designed for consolidation of concepts, and end with problems of an olympiad standard. 



1 The Konigsberg Bridge Problem 

In the early 1700's the citizens of the city of Konigsberg in Eastern Prussia entertained 
themselves with the following problem :-

Example 1.1 A map of Konigsberg and the river Pregel. 
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They tried to find a route on their Sunday walks that crossed each bridge exactly once 
and returned them to their starting point. Try as they might they could find no such 
route, and they began to believe that the task was impossible. 

Leonhard Euler showed in 1736 that there is no possible solution to the Konigsberg 
bridge problem when he published an article called 'The solution of a problem relating 
to the geometry of position.' 

With this article graph theory was born. 

We treat the four land areas as single points which are called vertices. SiO:gular : vertex . 

• >~e.'l"f"e.)l.·-..--·~---- ·- . -- - ... .:..;;. 

.. \ -------
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The bridges are edges that join the vertices. A collection of vertices and edges is called 
a gmph. A graph is sometimes denoted by the letter 9. We always accept that there 
are finitely many vertices in the graph 9. 

A journey along some edges, passing through some vertices, is called a path. The length 
of a path is the number of edges passed over when travelling along the path. A path 
that ends at the same vertex as where it starts is called a cycle. The length of a cycle 
is the same as the number of vertices passed through, counting the start/finish vertex 
once only. 
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passes over all of the edges of the above graph exactly once.' 

A path that passes over all the edges of a graph exactly once is called an Eulerian path 
in honcmr of Euler who solved the bridge problem. Of course, if it ends where it started, 
it is called an Eulerian cycle. 

Now for another example:-

Example 1.2 Can you draw the picture of the envelope without lifting your pencil from 
the paper?. 

Well there are many solutions. Here is one :-

This is just a graph theory problem : an equivalent problem is to find an Eulerian path 
for the following graph :-

Now we are ready to do some mathematical reasoning. When we pass over an edge, 
enter a vertex, and leave it again, we have 'used up' two of the edges that touch that 
vertex. 

3 



This occurs each time we enter and leave a vertex. 

The number of edges that touch a vertex is called the degree of that vertex. What we 
see is that if an Eulerian cycle can be achieved then all vertices will have to have even 
degree. Or will they? What about the starting vertex? We only use up one degree 
when we leave the starting vertex. But we use another one degree when returning to it 
at the end, thus making an even number of degrees for that vertex. 

Hence : if an Eulerian cycle exists then all vertices have even degree. So ... there is no 
solution to the Konigsberg bridge problem! 

What about the envelope problem? It has two vertices of odd degree so an Eulerian 
cycle cannot be constructed. But an Eulerian path has been constructed. We see that 
if an Eulerian path exists then either none or two of the vertices can have odd degree. 
If two of the vertices have odd degree, then the path must start at one of these two 
vertices and finish at the other. 

We now want to turn all these ideas around and ask : if all the vertices of a graph 
have even degree then does an Eulerian cycle exist? The answer is no for a very trivial 
reason. Look at 

@) 
This is an example of a disconnected graph. 

A graph is connected if there exists some path from every vertex to every other vertex 
in the graph. As another example, the following graph g is obviously not connected 

f\ 
I 

I • 

~; 

L .. 
but what is hopefully just as obvious is that it is made up of two 'connected pieces'. 
More formally, we can partition the vertices and edges of g into two graphs 91 and 92 

each of which are connected. 91 and 92 are called the connected components of g. 

In general, every graph can be broken up into finitely many connected components. 
Very often when proving results about graphs we can assume the graph is connected 
because it would be enough to work with the connected components of the original 
graph. 
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Theorem 1.3 Suppose g is a connected graph in which every vertex is of even degree. 
Then there exists an Eulerian cycle. 

Proof: We see that g can be split into disjoint cycles : cycles that have no edge 
in common. Start at any vertex and then start wandering, deleting edges as they are 
used. Because every vertex has even degree it is impossible to get stuck at a vertex, 
and because there are finitely many vertices, we must eventually return to where we 
started. Thus we construct a cycle. Remove this cycle. Repeat the process again and 
again on what remains of the graph until there is nothing left. (Note that the graph 
may become disconnected by performing this process. That doesn't matter, we just 
perform this process on each of the remaining components of the graph.) 

Now that we have split the graph into cycles we put them back together again. Suppose 
the graph has been split up into N cycles. Choose any two cycles which have a common 
vertex. We can join these two cycles together- journey on the one cycle until you reach 
the common vertex, then detour on the other cycle, and then complete the first cycle. 
Now the two cycles have been replaced by one, and so there are:now N- 1 cycles in 
total. Repeat until there is just one cycle remaining - which is then Eulerian. • 

Where is the connectedness of the graph needed in the proof? 

Remark 1.4 Given a connected graph which has all vertices of even degree, the fol­
lowing algorithm gives a simple procedure for constructing an Eu1erian cycle. This is 
called Fleaury's algorithm. 

Choose any starting vertex. Then :-

1. Travel along any edge, with the proviso that if we were to delete that edge then 
the graph would not become disconnected. 

2. Delete the edge. 

3. Repeat. 

Example 1.5 Use Fleaury's algorithm to construct an Eulerian cycle, that starts at u, 
for the following graph:-

c a. e 
~-/ \ 

/ 

'--

l\ /\ ~/ . ' ;/ \ 

. ! __ '~·j· -i 
-¥- \..1. 

b d. 

Starting at u, we may choose the edge ua, followed by ab. Erasing these edges (and 
the vertex a) gives us a situation where we cannot use the edge bu since it would make 
the graph disconnected, and so we choose the edge be, followed by cd and db. Then we 
traverse bu. Traversing the cycle uefu completes the Eulerian cycle. 
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1.1 Exercises : the Konigsberg Bridge Problem 

2 

1. Find, if possible, an Eulerian cycle or Eulerian path in the following graphs. 
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2. Use Fleaury's algorithm to construct an Eulerian cycle for the following graph:-
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3. In the country of Jetlaggia it is possible to travel by air between any two of the 
main cities; if there is not a direct flight there is at least an indirect flight passing 
through other cities on the way. A path is an air route between two different cities 
that passes through no intermediate city more than once. The length of a path is 
the total number of cities on it, counting its endpoint but not its starting point. 

Let M be'the maximum of all path lengths in Jetlaggia. Prove that any two paths 
of length M must have at least one city in common. 

(Australian MO Interstate Final (Senior Division) 1989, Question 1) 

Standard results and examples 

From now on we assume that 9 is a graph which has finitely many vertices and that 
there is at most one edge connecting any two vertices. This is a standard convention 
and many books include this property in their definition- as we shall see this is quite a 
natural convention. But note that under this convention the Konigsberg bridge 'graph' 
is not a graph! 
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Proposition 2.1 Suppose g is any gmph. 

(a) The sum of the degrees of the vertices of a graph is twice the number of edges in 
the graph. 

(b) There are an even number of vertices that have odd degree. 

Proof: (a) Any edge contributes two degrees to the graph: one to the vertex at one 
end of the edge and one to the vertex at the other end. 

(b) The total number of degrees is even. Subtract from this all of the degrees contributed 
by vertices with an even degree. What remains is an even number, and it is the total 
of the degrees contributed by the vertices with an odd degree. The only way a sum of 
odd numbers can be even is if there is an even number of them. • 

We are now going to see some of the standard graphs. 

Definition 2.2 (a) The graph with n vertices that has an edge between every two 
\ vertices is called the complete graph on n vertices, and denoted [(n. 

(b) The connected gmph with n vertices where each vertex has degree two is called the 
cyclic graph on n vertices, and denoted Cn . 

Do these two definitions make sense'?. 
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It is clear that I<n has ( ~ ) 

are n edges in the graph Cn. 

edges and that the degree of each vertex is n - 1. There 

Definition 2.3 Suppose we have two graphs 91 and 92 • Then we can create a new 
graph as follows : maintain the existing edges between the vertices of 91 and between 
the vertices of 92 , and add an edge between every vertex of 91 and every vertex of 92 . 

We will call this the complete coupling of the graphs 91 and 92 . 
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Examples 2.4 (a) 

.~ ~
"-- _"_"_"_" ______ ""-:] 
~~:=:~~ 2~ 

-------------------

'-.; 

The complete coupling of C 3 and C2. 

(b) Suppose we took two very boring graphs : one with n vertices and one with m 
vertices and no edges in either. The complete coupling of these two graphs is 
denoted Kn,m and is called the complete bipartite graph on n, m vertices. We will 
see more of this later. 

~ 
K., ~ -, 

=~'~?;~~;?>~ 
~-- --~~~ 4- - ---~,~ 

~~--~~:::-·::-::~ 

2.1 Exercises : Standard results and examples 

1. Is there a graph with 5 vertices where the degrees of the vertices are 

(a) 1,2,3,4,5? 

(b) 0,1,2,3,4? 

(c) 1,1,2,2,3? 

1~4-.Lt-

2. Suppose we have n ~ 2 points in the plane, some of which are connected by line 
segment&. Prove that there are two points which are the ends of the same number 
of line segments .. How many points can there be which are the ends of an odd 
number of line segments? 

3. At a business meeting some of the businesspeople shake hands. Show that there 
have to be two people who shake hands the same number of times. 

4. Can you find a group of 7 people where each knows exactly 3 others? 

5. For which of the following graphs can one find an Eulerian cycle? 

(a) Kn 

(b) Kn,m 

(c) Cn 
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6. Find a formula for the number of edges in the complete coupling of two graphs 
that involves information about the original two graphs. 

7. Suppose there is a party attended by 5 married couples. Various handshakes 
take place, but of course no couples shake hands (they know each other already, 
hopefully!) and no pair of people shake hands more than once. Afterwards, the 
host asks the other 9 people how many times they shook hands. To his surprise, 
the answers were all different. 

How many times did the host, and his wife, shake hands? 

8. Suppose 9 is a connected graph with k edges. Prove that it is possible to label 
the edges 1, 2, ... , k in such a way that at each vertex which belongs to two or 
more edges the greatest common divisor of the integers labelling those edges is 
equal to 1. 

(IMO 1991, Question 4) 

3 Colouring the edges of a graph 
\ 

We are now going to consider the problem of colouring the edges of certain graphs. We 
will be given a certain graph and an instruction to shade the edges of the graph in a 
particular way. The problem will be then to logically determine whether or not it is 
possible to shade the edges in that way. 

We will be most interested in monochromatic cycles. A monochromatic cycle is a cycle 
whose edges are all coloured the same colour. A monochromatic triangle is a monochro­
matic cycle of length three. A monochromatic odd/even cycle is a monochromatic cycle 
of odd/even length. 

Lets start straight away with perhaps the most well known result in graph theory : 

Theorem 3.1 If we shade the edges of K 6 with two colours, red and blue say, then 
there must be a monochromatic triangle. 

Proof: Take one of the vertices, v0 , arbitrarily. This vertex has degree 5, and so 
of the 5 edges from that vertex, by the Pigeonhole Principle at least three must be of 
one colour. Without loss of generality this colour is red. Suppose the red edges end at 
v1 , v2 , V3. If any one of the edges between v1 and v2 , v2 and v3 or v3 and v1 were red, 
then we would have a red triangle. If none of them were red, then they would all have 
to be blue, and then v1v2v3 would form a blue triangle. • 

I think such an elegant and simple argument deserves to be famous. Now we should 
note that if n ::::>: 6 then Kn will have a monochromatic triangle when shaded with two 
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colours, since it has K 6 as a subgraph. On the other hand, we can shade /(5 with two 
colours in such a way that there is no monochromatic triangle. 

(We will see in §4 that /{5 will always have a monochromatic odd cycle.) 

Now suppose we have three colours. We want to find the smallest value of n such that 
Kn is guaranteed to have a monochromatic triangle. We claim that /{17 is guaranteed 
to have a monochromatic triangle. (Its going to be obvious immediately where 17 came 
from.) 

Choose any one of the vertices. There are 16 edges from that vertex, and so by the 
Pigeonhole Principle six of them must be one of the three colours, say red. Look at 
the vertices at which these six edges end. If any of the edges between these six vertices 
are shaded red, then we have a monochromatic red triangle. If none of them are red, 
then we have a subgraph /{6 which is shaded only in the other two colours. Then by 
Theorem 3.1 we would have to have a monochromatic triangle there. 

What remains to be shown is that 17 is the optimal number, that is, it is possible to 
shade /(16 with three colours and no monochromatic triangle. (This isn't obvious.) 

3.1 Exercises : Colouring the edges of a graph 

1. Find the smallest(?) value of n for which whenever the edges of I<n are coloured 
with 4 colours then there exists at least one monochromatic triangle. 

2. A prism with pentagons A1A2A3A4 A5 and B 1B2B3B4Bs as top and bottom faces 
is given.' Each side of the two pentagons and each of the line segments A;B1 
where 1 :S i,j :S 5 is coloured either red or green. Every triangle whose vertices 
are vertices of the prism and whose sides have all been coloured has two sides of a 
different colour. Show that all 10 sides of the top and bottom faces are the same 
colour. 

(IMO 1979, Question 2) 

3. Consider nine points in space, no four of which are coplanar. Each pair of points 
is joined by an edge (that is, a line segment) and each edge is either coloured blue 
or red or left uncoloured. Find the smallest value of n such that whenever exactly 
n edges are coloured the set of coloured edges necessarily contains a triangle all 
of whose edges have the same colour. 

(IMO 1992, Question 3) 
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4 Bipartite graphs 

Definition 4.1 A bipartite graph g is one where the vertices can be divided into two 
disjozat sets X and Y so that every edge of the graph g connects a vertex in X to a 
vertex in Y. 

I 

tX 
I 

" \ ..... - ....... 

I z::::::t:: --=-·- ----~---- y\ I----~-·-- ·- I \ 

~.-. .:.:..~=4 I 

---..::,-.-----------.1---.... i 
- ..-L-------~~- ,:::c~ 

\ -· i I 

Example 4.2 Km,n is by definition a bipartite graph. 

Example 4.3 This next example assumes a small amount of familiarity with the game 
of chess. Suppose we have a chessboard (actually, this does not have to be an 8 by 

\g board - all we need is that the squares are coloured in black and white the way a 
chessboard usually is). We now think about the way a knight moves on a chessboard : 
two squares either horizontally /vertically and then one square vertically /horizontally. 
Then we have a graph : the vertices are the squares of the chessboard, and an edge 
is drawn between vertices iff a knight could move from the one square (vertex) to the 
other square (vertex). This is called the Knight's tour graph. Here, for example, is the 
knight's tour graph on a 4 by 4 board :-

~
---! 

~ 6, 
Y!: . y l:.i - _-.- \·-' ;-\~-X //'~ 

L.--"\L-----""' .__ .-- .- ~ -- --. 

Now notice that if a knight is on a white square then when it moves it moves to a black 
square, and vice versa. 

So the Knight's tour graph is bipartite : we let X be the set of all white squares and 
let Y be the set of all black squares. 

Notice that if a knight starts on a white square then after an even number of moves 
it will be on a white square and after an odd number of mo'les it will be on a black 
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square. In particular, any cycle must be of even length. This is an example of a more 
general phenomenon which is dealt with in the following theorem. 

Theorem 4.4 A graph is bipartite {===} all its cycles are of even length. 

Proof: A little thought will convince you that for a graph to be bipartite it will 
have to have all its cycles of even length. 

Now for the converse : it suffices to consider connected graphs. (Why?) Suppose the 
graph has all its cycles of even length. Then all paths from a vertex a to a vertex b 
will be of the same parity; for otherwise an odd-lengthed and a different even-lengthed 
journey from a to b implies an odd-lengthed cycle : from a, to b, and back to a. 

Now select a vertex a arbitrarily, and divide the vertices into two sets X and Y : let 
X be those vertices that are an even distance from a (this will include a, since a is 0 
distance from a, and 0 is even), and let Y be those vertices that are an odd distance 
from a. 

You can check this gives the desired partition of the graph. • 
We now have the following very interesting and useful corollary which continues our 
discussion of the colouring of graphs. 

Corollary 4.5 If m > 2n and the edges of I<m are coloured with n colours then there 
exists a monochromatic cycle of odd length. 

Proof: The proof is by induction; of course it is obvious for n = 1. 

Suppose the edges of f(m are coloured n different colours. Concentrate on one of the 
colours, say red. If the subgraph of red edges has an odd cycle then there is nothing to 
do, so suppose all monochromatic red cycles are of even length. Then the subgraph of 
the red edges is bipartite by Theorem 4.4. 

Form the bipartite partition of all the m vertices as determined by the red graph; say 
the vertices are divided .into sets X and Y. (Thus all the red edges connect a vertex 
in X with a vertex in Y.) One of the sets X and Y hasp> 2n-t points, say it is X. 
Consider the subgraph (all the colours now) with the points of X as vertices; of course 
this is a copy of I<P. But by construction none of the edges in this [{P are red. 

Thus we have the graph I<p which is coloured with n - 1 colours, and p > 2n-t. By 
induction there is an monochromatic cycle of odd length in I<p. Putting everything 
back together, we thus have an odd monochromatic circuit in I<m (which happens to 
be one of the other colours besides red). • 

Example 4.6 We have seen previously that for n 2: 6, Kn must have a monochromatic 
triangle when the edges are shaded with two colours, and that this does not hold if n ~ 5. 
However, /(5 must have a monochromatic cycle of odd length, since 5 > 4 = 22

. 
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Example 4.7 Suppose 3 airlines serve 10 cities in such a way that there is a direct 
service with one or more of the airlines between each city, and all journeys have corre­
sponding return journeys. 

Then at least one of the airlines offers a round trip with an odd number of landings, 
since 10 > 8 = 23 . 

4.1 Exercises : Bipartite graphs 

\ 

5 

1. Suppose 3 airlines serve 8 cities in such a way that there is a direct service with 
one or more of the airlines between each city, and all journeys have corresponding 
return journeys. Is it possible that all of the round trips provided by the 3 airlines 
have an even number of landings? 

2. Ten cities are served by two airlines in such a way that there exists a direct service 
between any two of the cities and all airline schedules are both ways . 

Show that at least one of the airlines can offer two disjoint round trips each 
containing an odd number of landings. 

(Submitted for the IMO 1990) 

Hamiltonian cycles 

Definition 5.1 A cycle in a graph Q is said to be Hamiltonian if it passes through each 
vertex of Q exactly once. 

It is clear that Kn has a Hamiltonian cycle for n 2: 3. Also, Cn has a Hamiltonian cycle 
for n 2: 3 (and then there is nothing left). 

It is interesting to ask when one can take a graph and decompose it into disjoint Hamil­
tonian cycles. That means : remove a Hamiltonian cycle, remove another Hamiltonian 
cycle, ... , until there is nothing left. 

So in a very trivial manner Cn is decomposed into disjoint Hamiltonian cycles, since 
you remove one cycle and you're already finished. What about [(5 ? You can check for 
yourself that [(5 can be decomposed into two Hamiltonian cycles. What about [(4 ? 
Try as you might you won't succeed, and there is an elegant way of arguing this. Try 
to work it out before proceeding to the proof of the next theorem. 

Theorem 5.2 (Lucas) 
Kn is the union of Hamiltonian cycles iff n is odd. 

13 



Proof: Consider the graph Kn. There are ( ~ ) = n(n
2
-t) edges and each Hamilto­

nian cycle will usc n of them, so we need to construct n;t cycles. In particular n needs 
to be odd. 

Now suppose n = 2m + 1 is indeed odd. We need to construct m disjoint Hamiltonian 
cycles. Let 2m of the vertices be represented by a regular 2m-gon with one vertex 
facing 'north'. Label the vertices 1, 2, ... , 2m, starting at 'north' and moving clockwise. 
Finally let the 2m+ 1-th vertex be in the middle of the gon. 

Now consider the cycle : 

t--, 
·-.;.._ 

-<: 
A 

·--~:""-~ ~~-~-· 
f 

I ..........__~~-------

~ 
~~ 

~-
A -
-~<--~ 

..... ·--..... 
.... .... f't'\+~ .. 

This is a Hamiltonian cycle. 

Now 'leave' the edges in place, but 'rotate' the vertices around the centre (say clockwise) 
through an angle of 3;~·. The edges trace out a new Hamiltonian cycle. We repeat this 
process m times (until just before 'north' and 'south' have swopped). 

Simple geometry shows that no two of the cycles have a common edge, and hence the 
graph is decomposed into Hamiltonian cycles. • 

Example 5.3 The graph /{9 is decomposed into the following four disjoint Hamiltonian 
cycles by the method of Lucas :-

9 1 2 8 3 7 4 6 5 9, 

9 8 1 7 2 6 3 5 4 9, 

9 7 8 6 1 5 2 4 3 9, 

9 6 7 5 8 4 1 3 2 9. 
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5.1 Exercises : Hamiltonian cycles 

1. Find, if possible, a Hamiltonian cycle in the following graphs. 

a. a. -fb 
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0.. 'c., a..\...., ~-· ·c 
','I~ '-r..,/ 
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r:J_U 

2. Can a knight perform a Hamiltonian cycle on a 13 by 15 chessboard? 

\ 3. Decompose ]{7 into disjoint Hamiltonian cycles. 

::Jc 

4. Let n be a positive integer and A1 , A2 , · • ·, A2n+I subsets of a set B. Suppose that 

(a) each A; has exactly 2n elements, 

(b) each A; n Ai (1 :S i < j :S 2n + 1) contains exactly one element, and 

(c) every element of B belongs to at least two of the A;. 

For which values of n can one assign to every element of B one of the numbers 0 
and 1 in such a way that each A; has 0 assigned to exactly n of its elements? 

(IMO 1988, Question 2) 
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6 Solutions 

6.1 Solutions : The Konigsberg Bridge Problem 

1. (i) No Eulerian path or cycle. 

(ii) abcdeacebda is an Eulerian cycle. 

(iii) abcadcfbefdea is an Eulerian cycle. 

(iv) No Eulerian cycle; acbeadb is an Eulerian path. 

2. Remove uv and vz. We cannot use the edge zu (this is a bridge, i.e. an edge 
which, if removed, would disconnect the graph). So we must use either zt or zy. 
For example, we transverse ztvwy. Now yz is illegal since this is also a bridge, 
so we transverse ytwxy, and then return (since there is no alternative) by the 
bridges yz and zu. So a possible Eulerian trail is 

uvztvwytwxyzu 

3. The question is simply asking : if 9 is a connected graph then any two paths of 
maximum length must have a vertex in common. 

Let Xo, ... , XM and Yo, ... , YM be two paths each of length M, and suppose these 
paths have no cities in common. 

There must be, by the hypothesis of the question, a path x;, ... , Yi connecting a 
city x; and a city Yh and not passing through any other xk and Yl· 

One of the subpaths x 0 , ... , x; and XM, ... , x; is of length at least ¥;suppose it 
is Xo, ... , x;. Likewise suppose y0, ... , Yi is of length at least ¥· Then the path 

xo, ... ,xi,···,YJ,···,Yo 

is of length at least M + 1, contradicting the fact that M was the maximum path 
length. 

6.2 Solutions : Standard results and examples 

1. The answer is no in all three cases : (a) if there are n vertices then the rules of 
the game imply that any degree is at most n- 1; (b) we can't have one vertex 
joined to all the others and another vertex joined to none; (c) we can't have three 
vertices of odd degree. 

2. Consider a graph where the points are the vertices and the line segments are the 
edges. There are n vertices and the possible values for the degrees is 0, 1, ... , n -1. 
Now 0 and n- 1 cannot both occur, so in actual fact there are only n -1 possible 
values for the degrees of the n vertices. So two of the vertices will have the same 
degree. 
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3. This is the same question as the one previously. 

4. Consider a graph of 7 vertices, representing the people, and let edges be drawn 
between people who know each other. If the scenario were possible, then each 
'/ertex would be of degree 3 i.e. there would be an odd number of vertices with 
odd degree. This is known to be impossible. 

5. All three of these graphs are connected, so we only need examine their degrees. 

(a) the degree of each vertex is n -1, so the graph has an Eulerian cycle iff n is 
odd. 

(b) The degrees of the vertices are morn, so the graph has an Eulerian cycle 
iff both m and n are even. 

(c) For n 2: 3 the degree of any vertex is two, and so an Eulerian cycle exists. 

6. Suppose the two graphs are 91 and 92 and they have v; vertices and e; edges 
(i = 1,2). Then the number of edges in the complete coupling is 

e1 + e2 + v 1v2 

7. We consider a graph with ten vertices where the handshakes are the edges. The 
degrees of the ten vertices are 

8, 7,6,5,4,3,2,1,0,h 

where h is the degree of the host. It is now clear that the person of degree 8 is 
married to the person of degree 0. We remove these two from the party, as if they 
had never been there and as if the 8 handshakes had never taken place. We have 
then the degrees of the eight remaining vertices are 

6,5,4,3,2,1,0,h- 1 

and so again we see that '6' and '0' are married. We remove them again. We 
repeat this process until we get 

O,h -4 

which are the wife of the host and the host. If we trace these people back to the 
original party, we see they both have degree 4. 

8. Start at some vertex v0 . Imagine yourself walking along distinct edges of the 
graph, numbering them 1, 2, ... as you encounter them, until you cannot go any 
further without reusing an edge. 

If there are edges which are not numbered, one of them has a vertex which has 
been visited, since 9 is connected. Starting with this vertex, continue to walk 
along unused edges, resuming the numbering where you left off, until once again 
you can go no further. Repeat this procedure until all th~. edges are numbered. 
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We now prove that the numbering satisfies the stated condition that at each vertex 
belonging to two or more edges the GC D of the numbers of the edges meeting at 
that vertex is 1. Let v be such a vertex. If v = v0 i.e. v is the starting point, then 
one of the edges meeting at v is labelled one, and so the GC D at v is 1. If v # v0 , 

suppose the first time you encountered v on the walk was at the end of the edge 
labelled r. At that time there were one or more unused edges at v, one of which 
was then labelled r + 1. The GC D of any set containing both r and r + 1 is 1. 

6.3 Solutions : Colouring the edges of a graph 

1. You should get 66 vertices. The argument is identical to the case of two or three 
colours, but it's not at all obvious that 66 is optimal. 

2. Suppose the top edges are not all the same colour. We may suppose then that edge 
A1 A2 is red and edge A2 A3 is green. At least three of the edges A2 B1 (1 :'S j :'S 5) 
are the same colour, say red. Label these edges A2 Br, A2 B., A2 Bt. Then (here 
is the important bit) at least one of BrB., BrBt, B,Bt is a base edge. Suppose 
it is BrBs. Clearly then this edge must be green. Now A 1Br and A 1B. must 
also be green, for otherwise we would have A 1A2Br or A 1A2B. as red triangles. 
Therefore A1 BrBs is a green triangle. This contradiction implies that A1 A2 and 
A2A3 have the same colour and similarly that all the edges of the base have the 
same colour. 

Now suppose the top edges are all red and the bottom edges are all green. If three 
green edges join A1 to the base, two of them must terminate on adjacent vertices 
Br, B, of the base. Then A1BrBs is a green triangle, a contradiction. Hence at 
least three red edges join A 1 to the bottom. Similarly, at least three red edges 
join A2 to the bottom. Since we now have six red edges, at least two of them 
must terminate in the same vertex, giving a red triangle : the final contradiction. 

3. (This superb problem featured on the first paper at the IMO in Moscow, 1992. 
As such 'it formed part of a baptism of fire for the first South African team to 
attend the Olympiad. It is unquestionably very difficult, and was spoken of very 
highly by the Russian officials.) 

What we have is the graph /{9 where the edges are coloured either red or blue or 
left uncoloured (alternatively, one can think that some edges have been removed). 
If one edge is removed, there remains within the graph a shaded copy of K 8 , which 
must have a monochromatic triangle. Similarly if two edges are removed, there 
remains within the graph a shaded copy of K1; and if three edges are removed, 
there remains within the graph a shaded copy of K 6 • So if up to three edges are 
removed then a monochromatic triangle is guaranteed. Now there are in total 
36 edges in the graph, so if n = 36 - 3 = 33 then a monochromatic triangle is 
guaranteed. 
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If we removed four edges, then we would be left with a copy of ]{5 , which can be 
shaded without monochromatic triangles. So it is feasible that if we remove four 
edges from ]{9 then the graph can be shaded without monochromatic triangles. 
To complete the problem, all we need do is construct an example showing that 
this is indeed possible. And as already hinted at, we should start from a shaded 
copy of ]{5 that has no monochromatic triangles and build it up (that is, add 
vertices and edges) until we arrive at the required graph. 

To achieve this, we can formulate the following algorithm : suppose g is any graph 
shaded in two (or more) colours and without monochromatic triangles. Then we 
can formulate the following method for forming a new graph Q' with one extra 
vertex and no monochromatic triangles and an 'optimal' increase in the number 
of edges. 

(a) Choose a vertex v0 of maximal degree. 

(b) Add a vertex w, and join w to all the vertices x of g that v0 is joined to, 
colouring the edge wx the same colour as that of VoX. 

X. 

""'"' / ' 

''· ' 

- -- --._ -.. ' ~
.· 

--- -----·.-.. 
// -~ 

Now given any two points x, y the triangle wxy is not monochromatic because the 
triangle VoXY is not. So there are no monochromatic triangles in the new graph 
Q'. 

This algorithm can be repeated as often as is necessary, adding further points. 

We note that 

(a) the degree of w is the degree of v0 ; 

(b) the degree of v0 does not change; 

(c) all vertices that v0 is connected to increase in degree by 1. 

We apply this algorithm to /{5 which is coloured without monochromatic triangles, 
and repeat four times. We count the degrees of each of the vertices during the 
process. 
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Vertices Degrees L: degrees #Edges 
5 44444 20 10 
6 455554 28 14 
7 5566655 38 19 
8 66677666 50 25 
9 777787777 64 32 

So we have a graph with 9 vertices, 32 edges, and no monochromatic triangle- as 
required. 

We leave it as a further exercise for you to show that if instead of 9 vertices we had 
considered 6,7,8 or 10 vertices, the same method would have given a full solution 
(n = 15,20,26 or 41). However, in the case of 11 vertices, a consideration of !{6 

tells us that n = 50 guarantees a monochromatic triangle, while the algorithm 
produces a graph with 48 (NO, NOT 49!) edges. So what happens here : is the 
answer 50 or is it 49? 

6.4 Solutions : Bipartite graphs 

1. We take two copies of I<4 shaded in two colours without monochromatic odd 
cycles and then the complete coupling of these graphs, the 'coupling edges' being 
all of the third colour. 

~--·---____, ' / ' 
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/ 
/ ' 
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r--------:1 
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2. Phrased in the language of graph theory : if the edges of /(10 are shaded either 
red or green then we want to show that there exist two red or two green disjoint 
cycles of'odd length. 

By considering a subgraph /(6 of /(10 we can find a monochromatic triangle (which 
of course is of odd length). Removing these three points, we are left with the graph 
/{7 • We can repeat the above process and find another monochromatic triangle. 
If these two triangles are of the same colour then we are already finished, so we 
suppose that one is red (on vertices u,v,w) and one is green (on vertices x,y,x). 
Label the other vertices a, b, c, d. 

We now examine the edges between u, v, wand x, y, z. 

Two of the edges from u to x, y, z must be of the same colour. Suppose they are 
to x and toy. If this colour were green then we would have a green triangle uxy, 
a red triangle uvw and then 5 unused points : z, a, b, c, d. By applying Corollary 
4.5 with m = 5 and n = 2 we have that on z, a, b, c, d there is a monochromatic 
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odd cycle. Combined with the triangle of the same colour listed above we would 
have two disjoint odd cycles of the same colour. 

Thus ux and uy must be red. For the same reasons at least two of the edges from 
•v to x, y, z must be red, and at least one of these must be to x or y. Say it is 
to x. Then we would have a red triangle uwx, a green triangle xyz and 5 further 
points v, a, b, c, d. As above we have two disjoint odd cycles of the same colour. 

6.5 Solutions : Hamiltonian cycles 

1. (i) abcda is a Hamiltonian cycle. 

(ii) abcdea is a Hamiltonian cycle. 

(iii) abcdhgfea is a Hamiltonian cycle. 

(iv) abcdfea is a Hamiltonian cycle. 

(v) There is no Hamiltonian cycle. 

2. There are an odd number of squares on this board. That means that the knight 
must make an odd number of moves in its Hamiltonian cycle. But since the graph 

- is bipartite, all cycles are of even length. Therefore there is no Hamiltonian cycle. 

3. 16253471; 65142376; 54631275. 

4. We first note that it fact every element of B belongs to exactly two of the sets 
A;. Since lAd = 2n and lA; nAil = 1 fori =fi j and l{j : i =fi j}l = 2n, we have 
that each A; is the union of its intersection with each of the other Aj's, and there 
is a contribution of exactly one element from each such Ai. So if some element 
belonged to three of the A; 's then the second and third set would both be trying 
to contribute that element to the first, which is impossible. 

We now consider the graph K 2n+I where the sets A; are the 2n + 1 vertices and 
the edge between A; and Ai is the unique element in A; n Ai. 

Now since 2n + 1 is odd we have that /(2n+I is expressed as the disjoint union of 
Hamiltonian cycles - in fact, n Hamiltonian cycles. 

If n is even then take any ~ of the cycles and label the edges of these cycles 0, 
the others 1. Then each A; has 0 assigned to n of its elements. 

Suppose now that n were odd, and suppose that the assignment were possible. 
Now remove all the edges labelled 0 from the graph. The remaining graph has 
2n + 1 vertices each of degree n, that is, an odd number of vertices of odd degree. 
This is impossible, so the assignment is impossible if n is odd. 
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