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Introduction

The South African Mathematical Society has the responsibility for selecting and
training teams to represent South African in the annual International Mathe-
matical Olympiad (IMO).

The process of finding a team to go to the IMO is a long one. It begins with
a nationwide Mathematical Talent Search, in which students are sent sets of
problems to solve. Their submissions are marked and returned with comments,
full solutions and a further set of problems. The principle behind the Talent
Search is straightforward: the more problems you solve, the higher up the ladder
you climb and the closer you get to selection.

The best students in the Talent Search are invited to attend Mathematical
Camps in which specialised problem-solving skills are taught. The students also
write a series of challenging Olympiad-level problem papers, leading to selection
of a team of six to go to the IMO.

The booklets in this series cover topics of particular relevance to Mathe-
matical Olympiads. Though their primary purpose is preparing students for
the International Mathematical Olympiad, they can with profit be read by all
interested high school students who would like to extend their mathematical
horizons beyond the confines of the school syllabus. They can also be used
by teachers and university mathematicians who are interested in setting up
Olympiad training programmes and need ideas on topics to cover and sample
Olympiad problems.
Titles in the series to date are:

No. 1 The Pigeon-hole Principle, by Valentin Goranko

No. 2 Topics in Number Theory, by Valentin Goranko

No. 3 Inequalities for the Olympiad Enthusiast, by Graeme West

No. 4 Graph Theory for the Olympiad Enthusiast, by Graeme West

No. 5 Functional Equations for the Olympiad Enthusiast, by Graeme West

No. 6 Mathematical Induction for the Olympiad Enthusiast, by David Jacobs

No. 7 Geometry for the Olympiad Enthusiast, by Bruce Merry

Details of the South African Mathematical Society’s Mathematical Talent Search
may be obtained by writing to

Mathematical Talent Search
Department of Mathematics and Applied Mathematics
University of Cape Town
7700 Rondebosch

The International Mathematical Olympiad Talent Search is sponsored by Old
Mutual
J H Webb
June 1996
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The Pigeon-Hole Principle

Do you know that there are at least two people in Pretoria with the same
number of hairs on their heads? (Well, let us ignore bald people to make this
statement non-trivial.) I see you would ask me how i know that. Of course,
you do not believe that I have counted the number of hairs on the head of each
inhabitant of Pretoria. All my life would not suffice to accomplish such a task.
Then how? Very simple: a mixture of little bits of biology, statistics and trivial
mathematics tells me that. It is known that the number of hairs on the head
of any human being is less than 200 000 (biology). Well, you agree that more
than 200 000 not bald-haired people live in Pretoria (statistics). If every two of
them had different number of hairs on their heads, then somebody should have
more than 200 000 hairs on his head, because the number of positive integers
not exceeding 200 000 is, of course, only 200 000 (trivial mathematics). Isn’t
that convincing?

1 The basic pigeon-hole principle

The above peculiar argument is a typical example of an extremely simple math-
ematical principle which, in the same magic way as a conjurer produces a rabbit
out of his empty sleeve, implies unbelievably many interesting and deep results
which otherwise would require enormous, if not impossible, technical efforts
to obtain (as in our example). This principle is often called the pigeon-hole
principle because a popular version of it reads:

If more than n pigeons fly into n pigeon-holes then at least two pigeons will get
into the same pigeon-hole.

Obvious, isn’t it? So obvious that if you have to prove it you would wonder
what actually is to be proved. Of course you could object that this is not a
precise mathematical statement, and therefore no mathematical (i.e. formal)
proof is applicable. You would be right. Here is a more formal expression of the
same idea.

Let P (for pigeons) and H (for pigeon-holes) be finite sets (i.e. sets with finite
numbers of elements; suppose we know what this means) and P has more

elements than H. Then for any rule which attaches every element of P to an
element of H there are (at least) two elements of P which are attached to the

same element of H.

This is what we shall hereafter call the pigeon-hole principle (PHP for short).
Try to recognize the original idea in this formal statement. The PHP is also
known as Dirichlet’s box principle after the famous German mathematician
Peter Gustav Lejeune-Dirichlet who first obtained serious mathematical results
(in number theory ) by applying this principle.

And yet, the task to prove the PHP in its formal appearance becomes no
simpler. Well, this can be done in various ways, say by mathematical induction.
The question however, is whether the principle of mathematical induction is
something more obvious than the PHP or it should not be proved as well. Now
we are wading into deep water and the matter goes beyond the scope of this
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article. The problem is briefly discussed in the appendix.

Here we shall learn how to apply the PHP in various situations. The art
of successful applications of the PHP consists in an appropriate choice of the
“pigeons” and “pigeon-holes”. Let us start with a paraphrase of the argument
at the beginning of the article using our principle. Consider all non bald-headed
people from Pretoria as “pigeons” and 200 000 pigeon-holes numbered by the
positive integers from 1 to 200 000. Then we let every “pigeon” fly into the
pigeon-hole numbered by the number of hairs on the “pigeon’s” head. Due to
the fact that the number of hairs cannot exceed 200 000 there will be no holeless
pigeons. Then, since the “pigeons” are more than the pigeon-holes, according
to the PHP at least two “pigeons” will inevitably occur in the same pigeon-hole,
i.e. two people will turn out to have the same number of hairs on their heads.

Now, try to apply the PHP to each of the following problems on your own
before you read the hints and solutions which are given at the end of the sec-
tions. The problems do not involve any mathematics outside the standard school
syllabus, except for some basic knowledge about prime numbers and divisibility.

Problem 1. There are 370 students in a school. Show that two of them have
birthdays on the same day.

Problem 2. Five points are placed inside an equilateral triangle with sides of
length 1. Show that the distance between two of them is less than 0.5.

Problem 3. 25 points are placed in a 6 × 16 rectangle. Show that there are
two between which the distance is not greater than 2

√
2.

Problem 4. Prove that for every positive integer n, amongst any n+1 integers
m1, . . . ,mn+1 there are two, the difference between which is a multiple of n.

Problem 5. Prove that for every positive integer n, and set of n integers
{m1, . . . ,mn} contains a non-empty subset, the sum of whose elements is a
multiple of n.

Problem 6. Show that there is a number of the form

39913991 · · · 39910 · · · 0

which is divisible by 1993.

Problem 7. Prove that amongst n+ 1 different integers m1, . . . ,mn+1, where
1 ≤ m1 < m2 < · · · < mn+1 ≤ 2n, there are three of which one is equal to the
sum of the other two.

Problem 8. Two integers are called relatively prime if they have no common
divisor greater than 1. Prove that is m and n are relatively prime positive
integers, then there is a positive integer k such that n divides mk − 1.

Problem 9. Is there a power of 7 which, when written in decimal notation,
ends with 00000001?

Problem 10. Prove that if m and n are relatively prime positive integers, then
there is a positive integer k such that n divides mk − 1.
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Problem 11. Let A be a set of 101 positive integers, each of which is not
greater than 200. Prove that there are two numbers in A, one of which is a
divisor of the other.

Problem 12. Show that in every set of 201 positive integers, each less than
301, there are two, the ratio of which is a power of 3.

Problem 13. Let M be a set of 75 positive integers not greater than 100. Show
that for each positive integer k ≤ 49 there are two elements of M which differ
by k.

Problem 14. In a college there are 1993 students. Some of them know each
other, others not. Assume that if student X knows student Y , then Y knows
X too. Show that there are two students who know the same number of fellow
students.

Problem 15. Given are n ≥ 2 points in the plane, some of which are connected
by line segments. Prove that there are two points which are ends of the same
number of segments.

Problem 16. Let x be a real number and n a positive integer. Show that there
exist integers p and q such that

1 ≤ q ≤ n and

∣∣∣∣x− p

q

∣∣∣∣ < 1

qn
.

Hints and Solutions

Solution 1. Let the students be our “pigeons”. There are at most 366 days in
the year; let them be the “pigeon-holes”. By the PHP there must be at least
two pigeons in some pigeon-hole, i.e. at least two students are born on the same
day. In formal terms: let P be the set of students in the school and H be the set
of the days in the year. Our rule attaches every student to tis birthday. Then,
according the “formal” PHP two students must be attached to the same day,
i.e. must have the same birthday.

Solution 2. The lines connecting the midpoints of the sides of triangle divide
it into 4 equilateral triangles each with side of length 0.5. Noe let us take these
4 triangles as “pigeon-holes”. Each of the 5 points lie in some (at least one)
of them. Therefore, by the PHP, at least two of the points must lie inside the
same “pigeon-hole”. The the distance between them is less than 0.5.

Hint 3. Partition the rectangle into 24 squares with side 3 and apply the idea
of the previous problem.

Solution 4. Note that if a and b are integers then a− b is a multiple of n if a
and b leave the same remainder when divided by n. There are exactly n different
remainders modulo n (i.e. remainders which can be obtained when dividing by
n): 0, 1, . . . , n− 1. Now, if we take the integers m1, . . . ,mn+1 as “pigeons” and
the remainders modulo n as “pigeons”, by the PHP two of the integers must
“fly” into the same “pigeon-hole”, i.e. must leave the same remainder modulo
n.
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Hint 5. Consider the numbers 0,m1,m1 + m2, . . . ,m1 + · · · + mn and apply
the method of the previous problem.

Hint 6. Consider the numbers 3991, 39913991, . . ., 3991 · · · (1994 times ) · · · 3991
and apply Problem 4.

Hint 7. Consider the numbers m1, . . . ,mn+1,m2 −m1, . . . ,mn+1 −m1, which
all lie between 1 and 2n.

Hint 8. Consider the remainders after dividing m, 2m, . . ., nm by n. They
are all different, otherwise n divides im − jm = (i − j)m for some different
integers 1 ≤ i, j ≤ n, hence n must divide i − j which is not possible since
0 < |i− j| < n. Then one of the remainders must be 1. For otherwise the n
“pigeons” m, 2m, . . . , nm must “fly” into n− 1 different “holes” — the remain-
ders 0, 2, . . . , n− 1, hence by the PHP two of the numbers must have the same
remainder which is not the case.

Hint 9. Yes. Consider the remainders of the powers of 7 modulo 108. Follow
the idea of Problem 8. Also show that if 108 divides 7k − 7m, then 108 divides
7k−m − 1.

Hint 10. Likewise: consider the remainders after division of m,m2, . . . ,mn by
n.

Solution 11. Let the numbers from the set A be the “pigeons” and the “pigeon-
holes” to be the odd positive integers not greater than 200. Now let each number
from A “fly” to its largest odd divisor. For instance 24 = 23 · 3 would fly to 3,
31 = 20 · 31 to 31 and 32 = 25 · 1 to 1. There are exactly 100 pigeon-holes hence
two numbers a1 and a2 from A must fly into the same pigeon-hole, i.e. a1 = 2ib
and a2 = 2jb. Now if i ≤ j then a1 divides a2, otherwise a2 divides a1.

Hint 12. Similar.

Hint 13. LetM = {n1, . . . , n75} and P = {1, 2, . . . , 150}. We attach n1, . . . , n75

to the numbers 1, 2, . . . , 75 and n1+k, n2+k, . . . , n75+k to 76, 77, . . . , 150. Thus,
a positive integer less than 150 is attached to every element of P . Now apply
the PHP and complete the proof on your own.

Solution 14. Of course, there is nothing magic in the number 1993; any other
one would do. Let us denote by P the set of students and attach to every
student the number of fellow-students she or he knows. Every such number is
between 0 and 1992. Thus the set H of numbers attached to the students is
included in {0, 1, 2, . . . , 1992}, therefore has no more than 1993 elements. This
is not very helpful, is it? However, if we think a bit more, we shall realize that
if a certain student knows nobody (i.e. the number 0 is attached to him) then
nobody knows him, hence no student knows all 1992 other students. Thus H
cannot contain both 0 and 1992, hence in fact it has no more than 1992 different
elements. Therefore by PHP, a certain number from H must be attached to at
least two students.

Hint 15. Do you see anything in common with the previous problem?

Solution 16. If z is a real number we denote by {z} the fractional part of z,
i.e. the unique number from the interval [0, 1) such that z − {z} is an integer.
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Now let us consider the fractional parts of 0x, 1x, 2x, . . . , nx. These are n + 1
numbers in the interval [0, 1). We divide this interval into n equal subintervals,
each with length 1

n :
[
0, 1

n

)
,
[
1
n ,

2
n

)
, . . .,

[
n−1
n , 1

)
. Then, by the PHP two of the

fractional parts {kx} will occur in the same subinterval, i.e. for some k1, k2 we
have |{k1x} − {k2x}| < 1

n . Let k1 > k2, a = k1x− {k1x} and b = k2x− {k2x}.
Then a and b are integers and

|(k1 − k2)x− (a− b)| < 1

n
.

Now we denote p = a− b, q = k1 − k2 and divide by q.

2 Some combinatorial-arithmetic applications of
PHP

Before proceeding further we shall take a brief rest from the pigeon-hole principle
with a short combinatorial interlude. The following two problems represent
important combinatorial facts which will be used further, but are worth knowing
anyway.

Problem 17. Prove that every set A with n elements has exactly 2n subsets.

Solution 17. An easy way to do that is by induction on n:

• if n = 1, i.e. A = {a}, the only two subsets of A are A and the empty set
∅;

• let the statement be true for any n-element set and letA = {a1, . . . , an, an+1}.
Denote A′ = {a1, . . . , an}. Then every subset of A is either a subset of A′

(if it does not contain an+1) or is obtained by adjoining an+1 to a subset
of A′. By the inductive hypothesis there are 2n subsets of A′. When we
adjoin an+1 to each of them we obtain 2n new and different subsets of A.
Thus the total number of subsets of A is 2n + 2n = 2 · 2n = 2n+1. The
induction is completed.

Problem 18. Show that the number of n-tuples (α1, . . . , αn) where each αi is
either 1 or 0, is 2n.

Solution 18. At first sight the only common thing between this problem and
the previous one is the number 2n. However, a very useful mathematical trick
called “one-to-one correspondence” will show us that in fact both problems
mean the same. The trick consists in the following: imagine two sets of arbitrary
nature and a rule which attaches to each element of the first exactly one element
of the second one, and that every element of the second set is attached to exactly
one element of the first one. If such a rule is given the two sets are said to be
in a one-to-one correspondence. Now, the important fact here is that if two
finite sets are in a one-to-one correspondence, they have the same number of
elements. Isn’t that clear? In fact, if you think a bit you will realize that
counting the number of elements of a set is nothing else but establishing a
one-to-one correspondence between the set and some set of positive integers
{1, 2, . . . , n}. (Even long ago, before the positive integers were “invented”, the
shepherds were aware of that mathematical fact: in order to make sure that no
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sheep from the flock was lost they used to “count” them with a bag of pebbles
called “calculi”, just by establishing one-to-one correspondence between the
pebbles and the sheep.) Noe we shall establish such a correspondence between
the set of subsets of {1, 2, . . . , n} and the set of n-tuples of 0’s and 1’s. Here it
is: to any subset A of {1, 2, . . . , n} we attach the n-tuple (α1, . . . , αn) where

αi =

{
1 if i ∈ A
0 otherwise

Check for yourself that this is a one-to-one correspondence. Now it only remains
to apply the previous problem.

The next problem is from the 14th International Mathematical Olympiad in
Poland, 1972.

Problem 19. Let M be an arbitrary set of 10 positive integers not greater than
100. Show that there are two disjoint (i.e. having no common elements) subsets
of M which have the same sum of their elements.

Let p1, . . . , pn be n fixed different prime numbers and P be the set of all
positive integers the prime divisors of which are among p1, . . . , pn. It is known
from the fundamental theorem of arithmetic that every number x ∈ P can
be represented in a unique way as a product pk11 · · · pknn , where the exponents
k1, . . . , kn are non-negative integers.

Problem 20. Show that amongst any 2n + 1 numbers from P there are two
whose product is a perfect square.

Problem 21. Let the set P be defined as above. Show that any set of n + 1
numbers from P contains a subset the product of whose elements is a perfect
square.

Problem 22. Let the set P be defined as above. Show that amongst any
3 · 2n + 1 numbers from P there are four, the product of which is a perfect
fourth power of an integer.

The next problem is from the 26th International Mathematical Olympiad in
1985.

Problem 23. The set M consists of 1985 positive integers none of which has
a prime divisor greater than 26. Prove that there are 4 different numbers from
M the product of which is a perfect fourth power of an integer.

Hints and Solutions

Solution 19. First, let us notice that if we find any two subsets X and Y of M
with the same sum of their elements, after removing the common elements from
both of them we shall obtain two disjoint subsets of M with the same property.
Thus the condition for disjointness is not essential.

Noe, the set A has 210 − 1 = 1023 non-empty subsets (Problem 17). They
will be our “pigeons”. Each of them we shall put in the “pigeon-hole” marked
by the sum of its elements. Note that every such sum is less than 10·100 = 1000.
Thus, the number of the pigeon-holes is less than 1000. Now the PHP completes
the proof.
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Solution 20. Observe that:

1. a product of numbers from P belongs to P too.

2. a number x = pk11 · · · pknn is a perfect square if and only if each of the
exponents k1, . . . , kn is an even number,

3. therefore a product of the numbers pk11 · · · pknn and pm1
1 · · · pmn

n is a perfect
square if and only if ki and mi have the same parity (i.e. either both are
even or both are odd) for each i = 1, . . . , n.

Now we are ready to apply the PHP. As “pigeons” we choose the given 2n +
1 numbers from P , To each of them x = pk11 · · · pknn we attach an n-tuple
(αi, . . . , αn) of 0’s and 1’s as follows: αi = 0 if ki is even, otherwise αi = 1
(i.e. αi is the remainder of ki when divided by 2.) Now, the number pk11 · · · pknn
we put in the “pigeon-hole” (αi, . . . , αn) thus defined. Due to observation (3)
above, if we succeed to show that two numbers will fall in the same “pigeon-
hole”, we are done. But we already know that the number of different n-tuples
of 0’s and 1’s is 2n (Problem 18), whereas the numbers are 2n + 1. The PHP
completes the proof.

Hint 21. Let the chosen numbers be x1, . . . , xn+1. The product of the numbers
in any non-empty subset of {x1, . . . , xn+1} belongs to P , hence it is of the
kind pk11 · · · pknn . Every such a product we attach to an n-tuple (αi, . . . , αn) of
0’s and 1’s as in the previous problem. The number of non-empty subsets of
{a1, . . . , an+1 is 2n+1−1 which is more than the number of n-tuples (αi, . . . , αn).
hence there are two subsets the products of which are attached to the same n-
tuple. We can regard these subsets disjoint (why?). Now, consider the product
of these two products.

Solution 22. Since 3 ·2n+1 > 2n+1 we can choose two of them the product of
which is a perfect square, as stated in Problem 18. For the remaining 3 · 2n − 1
we can apply the same argument and find another pair the product of which is

a perfect square. This argument can be repeated (3·2n+1)−(2n−1)
2 = 2n+1 times

and thus we obtain 2n + 1 pairs (xi, yi) (i = 1, . . . , 2n + 1), such that each xiyi
is a perfect square. Therefore the numbers

√
xiyi, (i = 1, . . . , n) are positive

integers which belong to P . Now, applying again Problem 18 we obtain that
the product of two of them, say

√
xiyi and

√
xjyj , is a perfect square. Then

xiyixjyj is a perfect fourth power.

Solution 23. There are 9 prime numbers not greater than 26: 2, 3, 5, 7, 11, 13, 17, 19, 23.
Since 3 · 29 + 1 = 1537 < 1985 we can apply Problem 22.

3 Finite generalizations of the PHP

To be more precise let us call the principle which we have exploited so far the
“shortage” principle of pigeon-holes” to distinguish from its dual, the “surplus”
principle of pigeon-holes:

If n pigeons fly into n+ 1 pigeon-holes then some pigeon-hole will remain
empty.
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This is as obvious as the “shortage” version, but still can be deduced from it:
suppose that each pigeon-hole is occupied and exchange the placed of the pi-
geons and the pigeon-holes in the original PHP. As a result you will find that
some pigeon has simultaneously flown in two different pigeon-holes which is im-
possible.

Try to formulate the formal version of the “surplus” PHP.

There are various generalizations of the PHP. Here we shall consider some
of the most important and useful ones.

PHP’:Let H be a finite set and P1, . . . , Pn be subsets of H such that the sum of
the numbers of elements of P1, . . . , Pn is greater than the number of elements

of H. Then at least two of these subsets have a common element.

For instance, if out of 20 students 13 have passed the test in physics and 8
have passed the test in mathematics, then at least one student has passed both
tests.

Problem 24. Prove the original PHP using the above statement.

Solution 24. Let P = {p1, . . . , pn} be the set of “pigeons” and the rule attaches
every pi to an element hi from the set of “pigeon-holes” H. Thus we obtain
the singleton sets {h1}, . . . , {hn} which are subsets of H and the sum of the
numbers of their elements is n × 1 = n which is greater than the number of
elements of H. Therefore two of these singleton sets must have an element in
common, i.e. two different elements of P must have the same element attached.

Problem 25. Formulate the “surplus” version of the PHP’.

Here is another generalization of the PHP, let us call it congested pigeon-holes
principle.

If (at least) kn+ 1 pigeons fly into n pigeon-holes then some pigeon-hole will
have to accommodate at least k + 1 pigeons.

For instance if 5 pigeon-holes have to accommodate 16 pigeons, then at least
4 pigeons will share the same pigeon-hole. The reason is that if no more than
3 pigeons fly in each pigeon-hole then the total number of pigeons in the 5
pigeon-holes would be no more than

5 pigeon-holes × 3 pigeons = 15pigeons.

And the formal statement:

CPHP:Let P and H be finite sets with respectively m and n elements and k be
a positive integer such that m > kn. Then for any rule which attaches every

element of P which are attached to the same element of H.

Note that when k = 1 in CPHP we obtain the original PHP.

Problem 26. 101 points are placed in the plane in such a way that amongst
every three of them there are two the distance between which is less than 1.
Show that some 51 of these points can be covered by a circle of radius 1.
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Problem 27. 606 points are placed in a square with side 1. Show that at least
6 of them can be covered by a circle of radius 1/15.

Problem 28. Each of nine lines divides a square into two trapeziums the ratio
of the areas of which is 19:93. Show that at least three of the lines are concurrent.

Problem 29. Show that amongst any mn+ 1 positive integers there are either
n+ 1 equal or m+ 1 pairwise different.

Problem 30. There are 13 blue, 10 red, 8 green and 6 yellow balls in a box.
How many of them must be taken out at random so that amongst them there
will be:

1. at least 5 of the same colour;

2. at least 3 green;

3. at least one of each colour?

Problem 31. In a school there are 370 students in 17 groups. Show that either
there is a group with at least 25 students or there are two groups with at least
24 students each?

Problem 32. Let n be an odd positive integer. Show that amongst any (n −
1)2 + 1 integers n can be chosen whose sum is divisible by n.

Another way to express the CPHP is the following:

Let P and H be finite sets with respectively m and n elements and k be a
natural number such that m > kn. Then for any rule which attaches to each

element of H no more than k elements of P there is an element of P which is
not attached to any element of H.

Verify that this statement is equivalent to the CPHP.

Here is a version of a very popular problem (in graph theory) which is solved
by a simple application of the CPHP.

Problem 33. In a company of 6 people every two of them either like or hate
each other. Show that amongst these 6 people there are either three who like
one another, or three who hate one another.

Another formulation of this problem, in terms of graph theory is: every two
of six points are connected by a line segment coloured either red or blue; prove
that there is either a red triangle or a blue triangle with vertices among these
points.

Problem 34. Every two of 17 points are connected by a line segment coloured
either in red, blue or green. Prove that there is a triangle with vertices among
these points and all sides of the same colour.

Problem 35. State and prove an analogue to the previous problem about 4
colours.
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Hints and Solutions

Solution 25. Let H be a finite set and P1, . . . , Pn be subsets of H such that
the sum of the numbers of elements of P1, . . . , Pn is less than the number of
elements of H. Then at least one element of H does not belong to any of these
subsets.

Solution 26. Let A be one of the points. If all other points lie within a circle
CA of radius 1 and centre A er are done. Suppose that some point B lies
outside CA and consider the circle CB of radius 1 and centre B. Then each of
the remaining 99 points lies in at least one of CA and CB (why?). Therefore,
by the PHP, one of these circles contains, besides its centre, at least 50 of the
given points.

Solution 27. Let us partition the square into 112 equal squares with a side 1/11
each. At least 6 points must be in the same small square since 121 × 5 = 605.
These points will be covered by the circumcircle of the square, the radius of
which is 1

11
√
2
< 1

15 .

Solution 28. The area of a trapezium equals the product of the height and the
length of the segment connecting the midpoints of the non-parallel sides. Each
line cuts a pair of opposite sides of the square and divides it into two trapeziums
with the same height, therefore it divides the segment connecting the midpoints
of the other two opposite sides of the square in the ratio 19:93. There are exactly
4 points in the square, two on each of the two halving segments. Thus, each of
the nine lines passes through one of these 4 points. Therefore at least three of
the lines pass through the same point.

19:93

Solution 29. Suppose that amongst the given numbers there are no more than
n different, i.e. each of them is equal to some of a1, . . . , ak for k ≤ n. Take
k pigeon-holes, mark them by a1, . . . , ak and put all given numbers in their
pigeon-holes. Then, by the congested PHP, some of a1, . . . , ak will occur at
least n+ 1 times in the given numbers.

Hint 30. The answers are

(a) 4× 4 + 1 = 17; (b) 13 + 10 + 3 + 6 = 32; (c) 13 + 10 + 8 + 1 = 32.

Hint 32. By Problem 29, amongst any (n − 1)2 + 1 integers either there are
n with different remainders modulo n or there are n with the same remainder
modulo n. In either case the sum of those n numbers is divisible by n. (Why?)
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Solution 33. Choose any of the people, call him X. He either likes at least
three of the other five or hates at least three of them. (Here we applied the
PHP.) Suppose the former is the case. If any two of the three liked by X like
each other then they, together with X, form a friendly triangle. If not, these
three form a hostile triangle.

Solution 34. Choose one of the points. Among the 16 segments with an end
at that point there are at least 6 of the same colour, say green. If there is a
green segment with ends among these 6 points we are done. If not, apply to
them the problem for two colours.

Hint 35. If the line segments between 1 + (1 + 4(17 − 1)) = 66 points are
coloured in one of four colours there will always be a monotone triangle with
vertices amongst them.

4 Infinite generalizations of the PHP

Now, try to imagine infinitely many pigeons. What will happen if they fly into
finitely many pigeon-holes. Of course, at least one of the pigeon-holes will have
to accommodate infinitely many pigeons. Formally:

Let P be an infinite set and H be a finite set. Then for any rule which
attaches every element of P to an element of H there are infinitely many

elements of P which are attached to the same element of H.

Problem 36. Prove the infinitary version of the PHP.

Hint 36. Suppose the contrary and apply the CPHP to get a contradiction.

The next problem is from the 17th International Mathematical Olympiad in
Bulgaria, 1975

Problem 37. Let a1, a2, . . . be a strictly increasing sequence of positive integers.
Prove that infinitely many terms of the sequence can be represented in the form

an = xap + yaq

where x and y are positive integers and p 6= q.

Problem 38. Let k be an arbitrary positive integer. Prove that there exists a
prime number p and a strictly increasing sequence of positive integers a1, a2, . . .
such that all terms of the sequence p + ka1, p + ka2, . . . , p + kan, . . . are prime
numbers.

Problem 39. A man walks with a step 1 along a line on which infinitely many
ditches, each d wide, are dug with their centres at a distance

√
2 from each

other. Prove that the man will certainly step into some ditch.

Solution 39. Let us “coil” the line on a circumference with length
√

2Then
all ditches will coincide. Since

√
2 is an irrational number, no two steps of the

man will coincide on the circumference, otherwise p
√

2 = q · 1 for some integers

p and q. Let N be a positive integer greater than
√
2
d . Let us partition the

circumference into N equal arcs each with length
√
2
N < d. After N + 1 steps

13



of the man two steps will get into the same arc. let them be the k-th and the
m-th steps where k > m. Then if we “snap” the positions of the man at the
moments m, m+ (k−m), m+ 2(k−m), . . . , we shall see that he is moving on

the circumference in the same direction with a step less than
√
2
N < d. Then he

will certainly fall into the ditch.

Note that the same proof works whenever the man walks with a step x and
the ditches are at a distance y from each other, if x/y is an irrational number.

Problem 40. A coordinate system is fixed in the plane and trees with the same
diameter d are planted at the points with integer coordinates. A marksman
stands at the origin and shoots in an arbitrary direction. Assuming that the
bullet can fly infinitely far, prove that is till certainly hit a tree.

Let X be a set of real numbers. X is said to be dense on the real line if
for every two real numbers a and b, a < b, there is an element x from X such
that a < x < b. For instance the set of all real numbers is dense: given a and
b, take x = (a+ b)/2. A non-trivial example of a dense set is the set of rational
numbers. Try to show that.

The next problem is an important theorem proved by the German mathe-
matician L. Kronecker, which extracts the mathematical essence from the last
two problem. Try to prove it in two ways: using Problem 38, and applying the
PHP directly.

Problem 41. Let α be an irrational number. Prove that the set A of all real
numbers mα+ n where m and n are integers is dense on the real line.

Problem 42. Given that log2 10 is an irrational number, show that for some
integer n, the decimal expression of 2n begins with 1993, i.e. 2n = 1993 · · · .

Hints and Solutions

Solution 37. Let m be any integer such that 0 ≤ m < a1 and Am be the
set of those terms of the sequence ak which divided by a1 give a remainder m.
Since every term of the sequence gets into one of A0, . . . , Aa1−1 then at least
one of there sets is infinite. Let Am = {ak1 , ak2 , . . .} where k1 < k2 < · · · and
aki = piai + m (i = 1, 2, . . .). Then aki − ak1 = (pi − p1)a1 hence for every
i = 1, 2, . . . , we have aki = xak1 + ya1 where x = 1 and y = pi − p1 > 0 and
k1 6= 1 since k1 > 1.

Solution 38. Let P be the set of all prime numbers. For every i = 0, 1, . . . , k−1
we denote by Pi the set of primes which divided by k give a remainder i. Every
prime gets into one of the sets P0, P1, . . . , Pk−1. Then one of them is infinite
since the set of all prime numbers is infinite. Suppose that Pi is infinite and
let p be its least element. Let x1, x2, . . . be the elements of Pi in an increasing
order. For every xn we denote an = xn−p

k . Then a1, a2, . . . is a sequence of
positive integers (why?) with the desired property.

Solution 40. Let the angle between the direction of shooting and the x-axis
be α. The the bullet will pass through all points (x, y) for which x ≥ 0, and
y = x tanα. If tanα is rational then y will be an integer for some integer x,
hence the bullet will hit the tree at (x, y) in the middle. Now let β = tanα be
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an irrational number. We shall apply the previous problem. Let ditches with
length d be dug along the y-axis, at a distance 1 from each other and midpoints
at (0, 0), (0, 1), (0, 2), . . .. Let a man walk from the point (0, 0) northwards with
a step β. Then for some integer x, after x steps the man will step into a ditch,
which means that the point (x, xβ) from the trajectory of the bullet is at a
distance less than d/2 from a point with integer coordinates, hence the bullet
will hit the tree planted at that point.

Solution 41. Let a and b be real numbers, a < b, and N > 1
b−a . Let ud parti-

tion the interval [0, 1) into N equal subintervals
[
0, 1

N

)
,
[
1
N ,

2
N

)
, . . . ,

[
N−1
N , 1

)
.

For every integer m we choose the integer n = {mα} −mα where {mα} is the
fractional part of mα. Since [0, 1) is partitioned into finitely many subintervals,
there are two different integers m1 and m2, such that {m1α} and {m2α} get
into the same subinterval. At that {m1α} and {m2α} are different, otherwise
α = n2−n1

m2−m1
, where n1 = {m1α} −m1α and n2 = {m2α} −m2α, is a rational

number. Letm2α+n2 > m1α+n1. Then 0 < (m2−m1)α+(n2−n1) < 1
n < b−a.

Therefore some of the multiples of (m2−m1)α+ (n2−n1), which too are of the
type mα+ n, will be between a and b (why?).

Hint 42. Show that there are integersm and n such that log10 1993 < n log10 2−
m < log10 1994.

5 Geometric (measure-theoretic) generalizations
of the PHP

It is intuitively clear that the idea behind the PHP is more general than the
“pigeon” version we have used so far. Let us look at the following practical
problem which I sometimes face. While I am working on my desk I want to
have all books which I am using open and readily available, i.e. not overlapping
with each other. The area of the surface of my desk is 2m2The area of the
surface which each open book occupies on the desk is 0.077m2. Now, do you see
my problem? I cannot use more than 25 books at a time. If I open 26 books on
my desk the total area which they will occupy is 0.077× 26 = 2.002m2 which is
more than the area of the surface of my desk, so that at least two of them must
overlap.

Do you see in that argument anything which resembles the PHP? You should.
If not, let us try to explain it again with pigeons. Imagine a cage with a volume of
1ft3 and 300 pigeons, each of which occupying a space with a volume 0.0034ft3.
We have to put all these pigeons in the cage. All this sounds rather cruel, but let
us forget for a moment that each pigeon needs some space full of air to breathe.
The only concern now is to arrange them somehow in the cage. Still, do we have
any chance to succeed? Does it make any sense to try this wild experiment at
all? Fortunately not, simply because:

1. no two pigeons can overlap in the space; and

2. the sum of the volumes of the pigeons is 0.0034× 300 = 1.02ft3, i.e. more
than the volume of the cage.
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As you see, these two situations are very similar. Let us extract the mathemat-
ical moral from them. First, what is common between area of a surface and
volume of a solid, and, let us add, length of a curve? All these are different
examples of measures of geometric figures. Loosely speaking, a measure is a
rule which attaches a non-negative real number to each member of a certain
class of sets called measurable sets. Each measure determines its own class of
measurable sets, of instance the class of space figures (regarded as sets of points
in the space) which have a volume, or the class of surfaces which have an area,
or the class of curves which have a length, etc. I shall not risk making this notes
difficult supplying a general definition of measure and measurable sets; this is a
rather advanced branch of mathematics. By measure you may think of any of
the above mentioned particular examples of geometric measures. The only fact
we need about measures is the following property (we suppose that a measure
and hence its class of measurable sets are fixed):

If H is a measurable set and P1, . . . , Pn are measurable subsets of H such that
the sum o f the measures of P1, . . . , Pn is greater than the measure of H then

at least two of these subsets have a non-empty intersection.

In other words:

If H is a measurable set and P1, . . . , Pn are pairwise disjoint measurable
subsets of H (i.e. every two of them have an empty intersection) then the sum

of the measures of P1, . . . , Pn cannot be greater than the measure of H.

We shall call either of these two equivalent statements a general pigeon-hole
principle.

If we take the class of finite sets and measure each of them by the number of
tis elements, the general PHP yields precisely the generalization PHP’ of the
original PHP.

You should be convinced in the validity of the general PHP for each of the
mentioned geometric measures. Here is the general HP for lengths of segments:

If several line segments with a sum of their lengths more than x are placed on
a line segment with a length x, then at least two of them have a common point.

And the dual version

If several line segments with a sum of their lengths less than x are placed on a
line segment L with a length x then there is a point of L which is not covered

by any of the small segments.

It is a good exercise to formulate the general PHP for areas and for volumes.
Another particular case of the general PHP is:

If several arcs with a sum of their lengths more than 2π are placed on a
circumference of radius 1, then at least two arcs have a common point.

We continue with a series of problems which employ various versions of the
general PHP.

Problem 43. 120 squares with a side 1 are placed on a rectangle with sides 20
and 25. Prove that a circle of diameter 1 can be placed in the rectangle without
intersecting any of the squares.
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Solution 43. If a circle of diameter 1 lies within a 20× 25 rectangle then the
centre of the circle lies within a smaller 24×19 rectangle with area 456. Now, if
the circle does not overlap with a square with a side 1 then the centre of the circle
lies outside a region around the square, with boundary at a distance 1/2 from

the square, as shown. The area of every such region is S = 1+4 ·1 · 12 +π
(
1
2

)2
=

3+ π
4 < 3.79. Then the sum of the areas of the regions around all 120 squares is

120×3.79 = 454.8 < 456. Therefore there exists a point O in the inner rectangle
not covered by any of the regions. The circle with centre O and diameter 1 is
what we need.

25

24

19 20 1
1
2

Problem 44. Show that a circle of radius S/P can be placed inside every
convex quadrilateral with perimeter P and area S.

Problem 45. Several chords are drawn in a circle of radius 1. If every diameter
cuts at most k chords, show that the sum of lengths of the chords is less than
kπ.

Problem 46. A point O is fixed in the plane. Are there 4 circles not covering
O such that any ray with a beginning O intersects (has a common point with)
at least two of the circles?

Problem 47. 4n line segments each of length 1 are placed inside a circle of
radius less than n. Show that there is a line parallel to one of the axes in the
plane and intersecting at least 2 of the segments.

Problem 48. Several circles with circumferences of total length 10 area placed
inside a square with a side 1. Show that there is a line which intersects at least
4 of the circles.

Problem 49 (Blihfeld’s Theorem). Prove that is a figure in the plane has an
area more than 1, then there are two points from the interior of the figure with
coordinates (x1, y1) and (x2, y2) respectively, such that x1 − x2 and y1 − y2 are
integers.

Problem 50. The plane is chequered by vertical and horizontal lines at a
distance 1 from each other. A figure is given with an area less than 1. Show that
the figure can be placed on the plane without covering any of the intersection
points.
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Hints and Solutions

Solution 44. On each of the sides of the quadrilateral as a base, we draw a
rectangle with height S/P expanding into the quadrilateral. The total area of
these rectangles is P × S/P = S and some of them overlap (why?). Therefore
there is a point O in Q which is not covered by any of the rectangles. Therefore
a circle of centre O and a radius S/P will lie inside the quadrilateral.

Solution 45. Assume that the sum of lengths of the chords is at least kπ. Then
the sum of the lengths of the small arcs adjacent to these chords is more than
kπ. If we consider those arcs together with the diametrically opposite ones,
then the sum of the lengths becomes more than 2kπ. Therefore, by the general
PHP, there is a point on the circle which belongs to at least k + 1 arcs. The
diameter through that point must cut at least k + 1 chords, which is not the
case. Therefore our assumption is wrong.

Solution 46. No. For every circle not covering O the angle between the two
tangents through O is less than 180◦. Then the sum of these angles for any 4
circles not covering O is less than 720◦. Therefore there is a point in the plane
covered by at most one circle.

Solution 47. Denote the segments by s1, . . . , s4n and the projections of si on
the x-axis and y-axis by ai and bi respectively. Then ai + b + i ≥ 1 (why?),
hence (a1 + · · ·+ a4n) + (b1 + · · ·+ b4n) ≥ 4n. Suppose that (a1 + · · ·+ a4n) ≥
(b1 + · · · + b4n). Then (a1 + · · · + a4n) ≥ 2n. The projections of all these
segments on the x-axis lie within the projection of the circle, which is a segment
with length less than 2n. Therefore two projections have a common point.
The line through that point parallel to the y-axis will intersect the respective
segments.

Hint 48. Project all circles on one of the sides of the square and compare the
total length of the projections with the length of the side.

Solution 49. Through every point in the plane with integer coordinates we
draw lines parallel to the axes. Thus the plane is chequered into squares with
side 1 each. Now we shift every such square, by means of a translation x 7→
x−m, y 7→ y− n, where (m,n) are the coordinates of the bottom left vertex of
the square, to the square with vertices (0,0), (0,1), (1,0), (1,1). Thus the parts
of Φ lying in the different squares will gather in this square. Since the area of
the square is 1 while the sum of areas of all parts of Φ is more than 1, there will
be a point (x0, y0) covered by two different parts, i.e. two different points from
Φ, (x1, y1) and (x2, y2),a re translated onto (x0, y0). Then x1 − x0 and y1 − y0
are integers and likewise for x2− x0 and y2− y0. Therefore x1− x2 and y1− y2
are integers, too.

Hint 50. Let us place the figure arbitrarily and translate all squares into one
as in Problem 49. The sum of the areas of the pieces of the figure is less than
the area of the square, hence it will not be covered by the pieces. Let us choose
an uncovered point A in the check and, fixing the figure placed as originally,
translate the plane in such a way that the translations of all intersection points
get into A. Then the figure will not cover any intersection points.
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6 Additional problems

We shall finish with a miscellany of problems involving the pigeon-hole principle.
They are left without solutions. Some of them are either easy or use ideas from
the previous problems, others are really challenging.

Problem 51. 101 points are placed in a square with a side 1. Show that at
least 5 of them can be covered by a circle of radius 1/7.

Problem 52. Φ is a figure on a sphere, which has area greater than half of the
area of the sphere. Prove that there are two diametrically opposed points in Φ.

Problem 53. Show that there exists a positive integer divisible by 3991 whose
decimal expression ends with 1993.

Problem 54. 50 points are placed in a circle of diameter 12. Show that there
are two points at a distance not greater than 2 apart.

Problem 55. 11 points are placed in a ball with volume V . Prove that a
portion with volume V/8 can be cut from the ball, which does not contain in
its interior any of the points.

Problem 56. Prove that amongst any 2m+ 1 different integers with absolute
values not greater than 2m− 1, there are three whose sum is zero.

Problem 57. Let k ≥ 1 and n ≥ 1 be positive integers and A be a set of
(k − 1)n + 1 integers each of which is not greater than kn. Prove that some
element of A can be represented as a sum of k (not necessarily different) elements
of A.

Problem 58. 15 points are placed inside an equilateral triangle with side 15.
Prove that three of the points can be covered by a circle of diameter

√
3.

Problem 59. Show that amongst every 11 different real numbers from the
interval [1, 1000] two can be chosen, say x and y, which satisfy the inequalities

0 < x− y < 1 + 3 3
√
xy.

Problem 60. Let x1, . . . , xk be real numbers and n a positive integer. Show

that there exist integers p1, . . . , pk and q such that 1 ≤ q ≤ nk and
∣∣∣xi − pi

q

∣∣∣ < 1
qn

for i = 1, . . . , k.

Problem 61 (18-th IMO, Austria, 1976). In the system of p equations for
q = 2p unknowns

a11x1 + a12x2 + · · ·+ a1qxq = 0

· · ·
ap1x1 + ap2x2 + · · ·+ apqxq = 0

all coefficients are either−1, 0 or 1. Prove that there exists a solution (x1, . . . , xq)
of the system, such that:

1. all xj (1 ≤ j ≤ q) are integers;
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2. at least one xj (1 ≤ j ≤ q) is non-zero;

3. for every j (1 ≤ j ≤ q) |xj | ≤ q.

Problem 62 (28th IMO, Cuba, 1987). Let x1, x2, . . . , xn be real numbers and
x21 + x22 + · · · + x2n = 1. Prove that for every integer k ≥ 2 there are integers
a1, a2, . . . , an not all zero, such that |ai| ≤ k−1, i = 1, 2, . . . , n and the following
inequality holds:

|a1x1 + a2x2 + · · ·+ anxn| ≤
(k − 1)

√
n

kn − 1
.
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Appendix

It can be shown that in a precise mathematical sense the pigeon-hole principle
and the principle of mathematical induction are equivalent, and thus, to verify
one of them by using the other would be like trying to get out of a quagmire
by pulling up your own hair. If we then start trying to verify the PHP directly,
very soon we shall realize in desperation that we cannot do so because there
are infinitely many finite sets about which we must check the validity of the
PHP. Well, this task is much more difficult than to count the number of hairs
on the head of each inhabitant of Pretoria. It is simply impossible. Thus, we
have no choice but to believe or to assume that, according to our understanding
of the notions of natural number and finite set, the PHP must be valid. Actu-
ally, in the same way the mathematicians have proceeded with the principle of
mathematical induction.
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